* Added Pytests for Decission Tree
Modified the mean_squared_error to be a static method
Created the Test_Decision_Tree class
Consists of two methods
1. helper_mean_squared_error_test: This method calculates the mean squared error manually without using
numpy. Instead a for loop is used for the same.
2. test_one_mean_squared_error: This method considers a simple test case and compares the results by the
helper function and the original mean_squared_error method of Decision_Tree class. This is done using asert
keyword.
Execution:
PyTest installation
pip3 install pytest OR pip install pytest
Test function execution
pytest decision_tree.py
* Modified the pytests to be compatible with the doctest
Added 2 doctest in the mean_squared_error method
For its verification a static method helper_mean_squared_error(labels, prediction) is used
It uses a for loop to calculate the error instead of the numpy inbuilt methods
Execution
```
pytest .\decision_tree.py --doctest-modules
```
I've implemented a basic decision tree in python as an example of how they work. Although the class I've created only works on one dimensional data sets, the reader should be able to generalize it to higher dimensions should they need to.