Compare commits

...

3 Commits

Author SHA1 Message Date
Jan-Lukas Huhn
f54a966810
Energy conversions (#8801)
* Create TestShiva

* Delete TestShiva

* Create energy_conversions.py

* Update conversions/energy_conversions.py

Co-authored-by: Caeden Perelli-Harris <caedenperelliharris@gmail.com>

---------

Co-authored-by: ShivaDahal99 <130563462+ShivaDahal99@users.noreply.github.com>
Co-authored-by: Caeden Perelli-Harris <caedenperelliharris@gmail.com>
2023-06-22 14:31:48 +02:00
Tianyi Zheng
5ffe601c86
Fix mypy errors in maths/sigmoid_linear_unit.py (#8786)
* updating DIRECTORY.md

* Fix mypy errors in sigmoid_linear_unit.py

* updating DIRECTORY.md

* updating DIRECTORY.md

---------

Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
2023-06-22 14:24:34 +02:00
Linus M. Henkel
5b0890bd83
Dijkstra algorithm with binary grid (#8802)
* Create TestShiva

* Delete TestShiva

* Implementation of the Dijkstra-Algorithm in a binary grid

* Update double_ended_queue.py

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update least_common_multiple.py

* Update sol1.py

* Update pyproject.toml

* Update pyproject.toml

* https://github.com/astral-sh/ruff-pre-commit v0.0.274

---------

Co-authored-by: ShivaDahal99 <130563462+ShivaDahal99@users.noreply.github.com>
Co-authored-by: jlhuhn <134317018+jlhuhn@users.noreply.github.com>
Co-authored-by: Christian Clauss <cclauss@me.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2023-06-22 13:49:09 +02:00
8 changed files with 224 additions and 22 deletions

View File

@ -15,8 +15,8 @@ repos:
hooks:
- id: auto-walrus
- repo: https://github.com/charliermarsh/ruff-pre-commit
rev: v0.0.272
- repo: https://github.com/astral-sh/ruff-pre-commit
rev: v0.0.274
hooks:
- id: ruff

View File

@ -0,0 +1,114 @@
"""
Conversion of energy units.
Available units: joule, kilojoule, megajoule, gigajoule,\
wattsecond, watthour, kilowatthour, newtonmeter, calorie_nutr,\
kilocalorie_nutr, electronvolt, britishthermalunit_it, footpound
USAGE :
-> Import this file into their respective project.
-> Use the function energy_conversion() for conversion of energy units.
-> Parameters :
-> from_type : From which type you want to convert
-> to_type : To which type you want to convert
-> value : the value which you want to convert
REFERENCES :
-> Wikipedia reference: https://en.wikipedia.org/wiki/Units_of_energy
-> Wikipedia reference: https://en.wikipedia.org/wiki/Joule
-> Wikipedia reference: https://en.wikipedia.org/wiki/Kilowatt-hour
-> Wikipedia reference: https://en.wikipedia.org/wiki/Newton-metre
-> Wikipedia reference: https://en.wikipedia.org/wiki/Calorie
-> Wikipedia reference: https://en.wikipedia.org/wiki/Electronvolt
-> Wikipedia reference: https://en.wikipedia.org/wiki/British_thermal_unit
-> Wikipedia reference: https://en.wikipedia.org/wiki/Foot-pound_(energy)
-> Unit converter reference: https://www.unitconverters.net/energy-converter.html
"""
ENERGY_CONVERSION: dict[str, float] = {
"joule": 1.0,
"kilojoule": 1_000,
"megajoule": 1_000_000,
"gigajoule": 1_000_000_000,
"wattsecond": 1.0,
"watthour": 3_600,
"kilowatthour": 3_600_000,
"newtonmeter": 1.0,
"calorie_nutr": 4_186.8,
"kilocalorie_nutr": 4_186_800.00,
"electronvolt": 1.602_176_634e-19,
"britishthermalunit_it": 1_055.055_85,
"footpound": 1.355_818,
}
def energy_conversion(from_type: str, to_type: str, value: float) -> float:
"""
Conversion of energy units.
>>> energy_conversion("joule", "joule", 1)
1.0
>>> energy_conversion("joule", "kilojoule", 1)
0.001
>>> energy_conversion("joule", "megajoule", 1)
1e-06
>>> energy_conversion("joule", "gigajoule", 1)
1e-09
>>> energy_conversion("joule", "wattsecond", 1)
1.0
>>> energy_conversion("joule", "watthour", 1)
0.0002777777777777778
>>> energy_conversion("joule", "kilowatthour", 1)
2.7777777777777776e-07
>>> energy_conversion("joule", "newtonmeter", 1)
1.0
>>> energy_conversion("joule", "calorie_nutr", 1)
0.00023884589662749592
>>> energy_conversion("joule", "kilocalorie_nutr", 1)
2.388458966274959e-07
>>> energy_conversion("joule", "electronvolt", 1)
6.241509074460763e+18
>>> energy_conversion("joule", "britishthermalunit_it", 1)
0.0009478171226670134
>>> energy_conversion("joule", "footpound", 1)
0.7375621211696556
>>> energy_conversion("joule", "megajoule", 1000)
0.001
>>> energy_conversion("calorie_nutr", "kilocalorie_nutr", 1000)
1.0
>>> energy_conversion("kilowatthour", "joule", 10)
36000000.0
>>> energy_conversion("britishthermalunit_it", "footpound", 1)
778.1692306784539
>>> energy_conversion("watthour", "joule", "a") # doctest: +ELLIPSIS
Traceback (most recent call last):
...
TypeError: unsupported operand type(s) for /: 'str' and 'float'
>>> energy_conversion("wrongunit", "joule", 1) # doctest: +ELLIPSIS
Traceback (most recent call last):
...
ValueError: Incorrect 'from_type' or 'to_type' value: 'wrongunit', 'joule'
Valid values are: joule, ... footpound
>>> energy_conversion("joule", "wrongunit", 1) # doctest: +ELLIPSIS
Traceback (most recent call last):
...
ValueError: Incorrect 'from_type' or 'to_type' value: 'joule', 'wrongunit'
Valid values are: joule, ... footpound
>>> energy_conversion("123", "abc", 1) # doctest: +ELLIPSIS
Traceback (most recent call last):
...
ValueError: Incorrect 'from_type' or 'to_type' value: '123', 'abc'
Valid values are: joule, ... footpound
"""
if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION:
msg = (
f"Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n"
f"Valid values are: {', '.join(ENERGY_CONVERSION)}"
)
raise ValueError(msg)
return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type]
if __name__ == "__main__":
import doctest
doctest.testmod()

View File

@ -32,7 +32,7 @@ class Deque:
the number of nodes
"""
__slots__ = ["_front", "_back", "_len"]
__slots__ = ("_front", "_back", "_len")
@dataclass
class _Node:
@ -54,7 +54,7 @@ class Deque:
the current node of the iteration.
"""
__slots__ = ["_cur"]
__slots__ = "_cur"
def __init__(self, cur: Deque._Node | None) -> None:
self._cur = cur

View File

@ -0,0 +1,89 @@
"""
This script implements the Dijkstra algorithm on a binary grid.
The grid consists of 0s and 1s, where 1 represents
a walkable node and 0 represents an obstacle.
The algorithm finds the shortest path from a start node to a destination node.
Diagonal movement can be allowed or disallowed.
"""
from heapq import heappop, heappush
import numpy as np
def dijkstra(
grid: np.ndarray,
source: tuple[int, int],
destination: tuple[int, int],
allow_diagonal: bool,
) -> tuple[float | int, list[tuple[int, int]]]:
"""
Implements Dijkstra's algorithm on a binary grid.
Args:
grid (np.ndarray): A 2D numpy array representing the grid.
1 represents a walkable node and 0 represents an obstacle.
source (Tuple[int, int]): A tuple representing the start node.
destination (Tuple[int, int]): A tuple representing the
destination node.
allow_diagonal (bool): A boolean determining whether
diagonal movements are allowed.
Returns:
Tuple[Union[float, int], List[Tuple[int, int]]]:
The shortest distance from the start node to the destination node
and the shortest path as a list of nodes.
>>> dijkstra(np.array([[1, 1, 1], [0, 1, 0], [0, 1, 1]]), (0, 0), (2, 2), False)
(4.0, [(0, 0), (0, 1), (1, 1), (2, 1), (2, 2)])
>>> dijkstra(np.array([[1, 1, 1], [0, 1, 0], [0, 1, 1]]), (0, 0), (2, 2), True)
(2.0, [(0, 0), (1, 1), (2, 2)])
>>> dijkstra(np.array([[1, 1, 1], [0, 0, 1], [0, 1, 1]]), (0, 0), (2, 2), False)
(4.0, [(0, 0), (0, 1), (0, 2), (1, 2), (2, 2)])
"""
rows, cols = grid.shape
dx = [-1, 1, 0, 0]
dy = [0, 0, -1, 1]
if allow_diagonal:
dx += [-1, -1, 1, 1]
dy += [-1, 1, -1, 1]
queue, visited = [(0, source)], set()
matrix = np.full((rows, cols), np.inf)
matrix[source] = 0
predecessors = np.empty((rows, cols), dtype=object)
predecessors[source] = None
while queue:
(dist, (x, y)) = heappop(queue)
if (x, y) in visited:
continue
visited.add((x, y))
if (x, y) == destination:
path = []
while (x, y) != source:
path.append((x, y))
x, y = predecessors[x, y]
path.append(source) # add the source manually
path.reverse()
return matrix[destination], path
for i in range(len(dx)):
nx, ny = x + dx[i], y + dy[i]
if 0 <= nx < rows and 0 <= ny < cols:
next_node = grid[nx][ny]
if next_node == 1 and matrix[nx, ny] > dist + 1:
heappush(queue, (dist + 1, (nx, ny)))
matrix[nx, ny] = dist + 1
predecessors[nx, ny] = (x, y)
return np.inf, []
if __name__ == "__main__":
import doctest
doctest.testmod()

View File

@ -67,7 +67,7 @@ def benchmark():
class TestLeastCommonMultiple(unittest.TestCase):
test_inputs = [
test_inputs = (
(10, 20),
(13, 15),
(4, 31),
@ -77,8 +77,8 @@ class TestLeastCommonMultiple(unittest.TestCase):
(12, 25),
(10, 25),
(6, 9),
]
expected_results = [20, 195, 124, 210, 1462, 60, 300, 50, 18]
)
expected_results = (20, 195, 124, 210, 1462, 60, 300, 50, 18)
def test_lcm_function(self):
for i, (first_num, second_num) in enumerate(self.test_inputs):

View File

@ -17,7 +17,7 @@ This script is inspired by a corresponding research paper.
import numpy as np
def sigmoid(vector: np.array) -> np.array:
def sigmoid(vector: np.ndarray) -> np.ndarray:
"""
Mathematical function sigmoid takes a vector x of K real numbers as input and
returns 1/ (1 + e^-x).
@ -29,17 +29,15 @@ def sigmoid(vector: np.array) -> np.array:
return 1 / (1 + np.exp(-vector))
def sigmoid_linear_unit(vector: np.array) -> np.array:
def sigmoid_linear_unit(vector: np.ndarray) -> np.ndarray:
"""
Implements the Sigmoid Linear Unit (SiLU) or swish function
Parameters:
vector (np.array): A numpy array consisting of real
values.
vector (np.ndarray): A numpy array consisting of real values
Returns:
swish_vec (np.array): The input numpy array, after applying
swish.
swish_vec (np.ndarray): The input numpy array, after applying swish
Examples:
>>> sigmoid_linear_unit(np.array([-1.0, 1.0, 2.0]))

View File

@ -47,18 +47,18 @@ import os
class PokerHand:
"""Create an object representing a Poker Hand based on an input of a
string which represents the best 5 card combination from the player's hand
string which represents the best 5-card combination from the player's hand
and board cards.
Attributes: (read-only)
hand: string representing the hand consisting of five cards
hand: a string representing the hand consisting of five cards
Methods:
compare_with(opponent): takes in player's hand (self) and
opponent's hand (opponent) and compares both hands according to
the rules of Texas Hold'em.
Returns one of 3 strings (Win, Loss, Tie) based on whether
player's hand is better than opponent's hand.
player's hand is better than the opponent's hand.
hand_name(): Returns a string made up of two parts: hand name
and high card.
@ -66,11 +66,11 @@ class PokerHand:
Supported operators:
Rich comparison operators: <, >, <=, >=, ==, !=
Supported builtin methods and functions:
Supported built-in methods and functions:
list.sort(), sorted()
"""
_HAND_NAME = [
_HAND_NAME = (
"High card",
"One pair",
"Two pairs",
@ -81,10 +81,10 @@ class PokerHand:
"Four of a kind",
"Straight flush",
"Royal flush",
]
)
_CARD_NAME = [
"", # placeholder as lists are zero indexed
_CARD_NAME = (
"", # placeholder as tuples are zero-indexed
"One",
"Two",
"Three",
@ -99,7 +99,7 @@ class PokerHand:
"Queen",
"King",
"Ace",
]
)
def __init__(self, hand: str) -> None:
"""

View File

@ -103,6 +103,7 @@ max-complexity = 17 # default: 10
"machine_learning/linear_discriminant_analysis.py" = ["ARG005"]
"machine_learning/sequential_minimum_optimization.py" = ["SIM115"]
"matrix/sherman_morrison.py" = ["SIM103", "SIM114"]
"other/l*u_cache.py" = ["RUF012"]
"physics/newtons_second_law_of_motion.py" = ["BLE001"]
"project_euler/problem_099/sol1.py" = ["SIM115"]
"sorts/external_sort.py" = ["SIM115"]