Compare commits

..

No commits in common. "0f193400e1ca7e285562a191602a86494379eabf" and "4eb7f1d548b8370aa200f44a6100d78eb48d9030" have entirely different histories.

2 changed files with 40 additions and 169 deletions

View File

@ -1,121 +1,61 @@
from __future__ import annotations
from math import ceil, sqrt
import time
from __future__ import annotations
def timer(func):
def wrapper(*args, **kwargs):
start = time.time()
result = func(*args, **kwargs)
print(result)
end = time.time()
print(f"{func.__name__} took {end - start:.6f} seconds to execute.")
return result
return wrapper
@timer
def prime_factors(n: int) -> list[int]:
"""
Returns prime factors of n as a list.
>>> prime_factors(0)
[]
>>> prime_factors(100)
[2, 2, 5, 5]
>>> prime_factors(2560)
[2, 2, 2, 2, 2, 2, 2, 2, 2, 5]
>>> prime_factors(10**-2)
[]
>>> prime_factors(0.02)
[]
>>> x = prime_factors(10**241) # doctest: +NORMALIZE_WHITESPACE
>>> x == [2]*241 + [5]*241
True
>>> prime_factors(10**-354)
[]
>>> prime_factors('hello')
Traceback (most recent call last):
...
TypeError: '<=' not supported between instances of 'int' and 'str'
>>> prime_factors([1,2,'hello'])
Traceback (most recent call last):
...
TypeError: '<=' not supported between instances of 'int' and 'list'
"""
if not isinstance(n, int):
raise TypeError("Input must be an integer")
if n <= 0:
return []
i = 2
factors = []
while i * i <= n:
if n % i:
i += 1
else:
n //= i
factors.append(i)
if n > 1:
factors.append(n)
return factors
@timer
def primeproduct(num: int) -> list[int]:
def primeproduct(n: int, x: list = []) -> list[int]:
"""
>>> primeproduct(868)
[2, 2, 7, 31]
>>> primeproduct(9039423423423743)
[2, 2, 7, 31, 719, 12572216166097]
>>> primeproduct(0.02)
Traceback (most recent call last):
ValueError: invalid literal for int() with base 10: '0.02'
>>> primeproduct(-2342)
[]
"""
if not isinstance(num, int):
raise TypeError("Input must be an integer")
if num <= 1:
if n < 1:
return []
prime_factors: list[int] = []
while num > 1:
if len(prime_factors) >= 1 and prime_factors[-1] % num == 0:
prime_factors.append(prime_factors[-1])
if n > 1:
if len(x) >= 1 and x[-1] % n == 0: # check in already factorised
x.append(x[-1])
n = n // x[-1]
else:
sq = ceil(sqrt(num))
sq = ceil(sqrt(n))
flag = 0
if prime_factors != []:
for i in range(prime_factors[-1], sq + 1, 2):
if num % i == 0:
num = num // i
prime_factors.append(i)
if x != []:
for i in range(x[-1], sq + 1, 2):
if n % i == 0:
n = n // i
x.append(i)
flag = 1
break
else:
while num % 2 == 0:
num = num // 2
prime_factors.append(2)
for i in range(3, sq + 1, 2):
if num % i == 0:
num = num // i
prime_factors.append(i)
# Handle factor 2 separately
while n % 2 == 0: # only 2 is even prime
n = n // 2
x.append(2)
# Start loop from 3 and increment by 2
for i in range(3, sq + 1, 2): # skip even numbers
if n % i == 0:
n = n // i
x.append(i)
flag = 1
break
if not flag and num > 1:
prime_factors.append(num)
num = 1
break
return prime_factors
if not flag:
x.append(n)
n = 1
return primeproduct(n, x)
return x
# faster than https://github.com/sourabhkv/Python/blob/master/maths/prime_factors.py approx 2x
if __name__ == "__main__":
n = int(input("enter number: ").strip())
primeproduct(n)
prime_factors(n)
import doctest
doctest.testmod()

View File

@ -1,21 +1,9 @@
"""
python/black : True
"""
from __future__ import annotations
from math import ceil, sqrt
import time
def timer(func):
def wrapper(*args, **kwargs):
start = time.time()
result = func(*args, **kwargs)
print(result)
end = time.time()
print(f"{func.__name__} took {end - start:.6f} seconds to execute.")
return result
return wrapper
@timer
def prime_factors(n: int) -> list[int]:
"""
Returns prime factors of n as a list.
@ -58,64 +46,7 @@ def prime_factors(n: int) -> list[int]:
return factors
@timer
def primeproduct(num: int) -> list[int]:
"""
>>> primeproduct(868)
[2, 2, 7, 31]
>>> primeproduct(9039423423423743)
[2, 2, 7, 31, 719, 12572216166097]
>>> primeproduct(0.02)
Traceback (most recent call last):
ValueError: invalid literal for int() with base 10: '0.02'
>>> primeproduct(-2342)
[]
"""
if num <= 1:
return []
prime_factors: list[int] = []
while num > 1:
if len(prime_factors) >= 1 and prime_factors[-1] % num == 0:
prime_factors.append(prime_factors[-1])
else:
sq = ceil(sqrt(num))
flag = 0
if prime_factors != []:
for i in range(prime_factors[-1], sq + 1, 2):
if num % i == 0:
num = num // i
prime_factors.append(i)
flag = 1
break
else:
while num % 2 == 0:
num = num // 2
prime_factors.append(2)
for i in range(3, sq + 1, 2):
if num % i == 0:
num = num // i
prime_factors.append(i)
flag = 1
break
if not flag and num > 1:
prime_factors.append(num)
num = 1
break
return prime_factors
if __name__ == "__main__":
n = int(input("enter number: "))
primeproduct(n)
prime_factors(n)
import doctest
doctest.testmod()