Compare commits

..

No commits in common. "3040f9970757ce8fae91ba1c791c1909c9f17df5" and "b03c5a3ba017e05b4bc3604769c97f7111a56665" have entirely different histories.

34 changed files with 409 additions and 1337 deletions

View File

@ -16,7 +16,7 @@ repos:
- id: auto-walrus
- repo: https://github.com/astral-sh/ruff-pre-commit
rev: v0.0.284
rev: v0.0.282
hooks:
- id: ruff
@ -33,7 +33,7 @@ repos:
- tomli
- repo: https://github.com/tox-dev/pyproject-fmt
rev: "0.13.1"
rev: "0.13.0"
hooks:
- id: pyproject-fmt
@ -51,7 +51,7 @@ repos:
- id: validate-pyproject
- repo: https://github.com/pre-commit/mirrors-mypy
rev: v1.5.0
rev: v1.4.1
hooks:
- id: mypy
args:

View File

@ -62,7 +62,7 @@
## Boolean Algebra
* [And Gate](boolean_algebra/and_gate.py)
* [Nand Gate](boolean_algebra/nand_gate.py)
* [Nor Gate](boolean_algebra/nor_gate.py)
* [Norgate](boolean_algebra/norgate.py)
* [Not Gate](boolean_algebra/not_gate.py)
* [Or Gate](boolean_algebra/or_gate.py)
* [Quine Mc Cluskey](boolean_algebra/quine_mc_cluskey.py)
@ -74,7 +74,6 @@
* [Game Of Life](cellular_automata/game_of_life.py)
* [Nagel Schrekenberg](cellular_automata/nagel_schrekenberg.py)
* [One Dimensional](cellular_automata/one_dimensional.py)
* [Wa Tor](cellular_automata/wa_tor.py)
## Ciphers
* [A1Z26](ciphers/a1z26.py)
@ -336,11 +335,9 @@
* [Minimum Tickets Cost](dynamic_programming/minimum_tickets_cost.py)
* [Optimal Binary Search Tree](dynamic_programming/optimal_binary_search_tree.py)
* [Palindrome Partitioning](dynamic_programming/palindrome_partitioning.py)
* [Regex Match](dynamic_programming/regex_match.py)
* [Rod Cutting](dynamic_programming/rod_cutting.py)
* [Subset Generation](dynamic_programming/subset_generation.py)
* [Sum Of Subset](dynamic_programming/sum_of_subset.py)
* [Tribonacci](dynamic_programming/tribonacci.py)
* [Viterbi](dynamic_programming/viterbi.py)
* [Word Break](dynamic_programming/word_break.py)
@ -555,7 +552,6 @@
* [Chudnovsky Algorithm](maths/chudnovsky_algorithm.py)
* [Collatz Sequence](maths/collatz_sequence.py)
* [Combinations](maths/combinations.py)
* [Continued Fraction](maths/continued_fraction.py)
* [Decimal Isolate](maths/decimal_isolate.py)
* [Decimal To Fraction](maths/decimal_to_fraction.py)
* [Dodecahedron](maths/dodecahedron.py)
@ -574,7 +570,9 @@
* [Fermat Little Theorem](maths/fermat_little_theorem.py)
* [Fibonacci](maths/fibonacci.py)
* [Find Max](maths/find_max.py)
* [Find Max Recursion](maths/find_max_recursion.py)
* [Find Min](maths/find_min.py)
* [Find Min Recursion](maths/find_min_recursion.py)
* [Floor](maths/floor.py)
* [Gamma](maths/gamma.py)
* [Gamma Recursive](maths/gamma_recursive.py)
@ -1171,7 +1169,6 @@
* [Is Pangram](strings/is_pangram.py)
* [Is Spain National Id](strings/is_spain_national_id.py)
* [Is Srilankan Phone Number](strings/is_srilankan_phone_number.py)
* [Is Valid Email Address](strings/is_valid_email_address.py)
* [Jaro Winkler](strings/jaro_winkler.py)
* [Join](strings/join.py)
* [Knuth Morris Pratt](strings/knuth_morris_pratt.py)

View File

@ -74,7 +74,10 @@ def is_for_table(string1: str, string2: str, count: int) -> bool:
"""
list1 = list(string1)
list2 = list(string2)
count_n = sum(item1 != item2 for item1, item2 in zip(list1, list2))
count_n = 0
for i in range(len(list1)):
if list1[i] != list2[i]:
count_n += 1
return count_n == count
@ -89,34 +92,40 @@ def selection(chart: list[list[int]], prime_implicants: list[str]) -> list[str]:
temp = []
select = [0] * len(chart)
for i in range(len(chart[0])):
count = sum(row[i] == 1 for row in chart)
count = 0
rem = -1
for j in range(len(chart)):
if chart[j][i] == 1:
count += 1
rem = j
if count == 1:
rem = max(j for j, row in enumerate(chart) if row[i] == 1)
select[rem] = 1
for i, item in enumerate(select):
if item != 1:
continue
for j in range(len(chart[0])):
if chart[i][j] != 1:
continue
for row in chart:
row[j] = 0
temp.append(prime_implicants[i])
for i in range(len(select)):
if select[i] == 1:
for j in range(len(chart[0])):
if chart[i][j] == 1:
for k in range(len(chart)):
chart[k][j] = 0
temp.append(prime_implicants[i])
while True:
counts = [chart[i].count(1) for i in range(len(chart))]
max_n = max(counts)
rem = counts.index(max_n)
max_n = 0
rem = -1
count_n = 0
for i in range(len(chart)):
count_n = chart[i].count(1)
if count_n > max_n:
max_n = count_n
rem = i
if max_n == 0:
return temp
temp.append(prime_implicants[rem])
for j in range(len(chart[0])):
if chart[rem][j] != 1:
continue
for i in range(len(chart)):
chart[i][j] = 0
for i in range(len(chart[0])):
if chart[rem][i] == 1:
for j in range(len(chart)):
chart[j][i] = 0
def prime_implicant_chart(

View File

@ -1,550 +0,0 @@
"""
Wa-Tor algorithm (1984)
@ https://en.wikipedia.org/wiki/Wa-Tor
@ https://beltoforion.de/en/wator/
@ https://beltoforion.de/en/wator/images/wator_medium.webm
This solution aims to completely remove any systematic approach
to the Wa-Tor planet, and utilise fully random methods.
The constants are a working set that allows the Wa-Tor planet
to result in one of the three possible results.
"""
from collections.abc import Callable
from random import randint, shuffle
from time import sleep
from typing import Literal
WIDTH = 50 # Width of the Wa-Tor planet
HEIGHT = 50 # Height of the Wa-Tor planet
PREY_INITIAL_COUNT = 30 # The initial number of prey entities
PREY_REPRODUCTION_TIME = 5 # The chronons before reproducing
PREDATOR_INITIAL_COUNT = 50 # The initial number of predator entities
# The initial energy value of predator entities
PREDATOR_INITIAL_ENERGY_VALUE = 15
# The energy value provided when consuming prey
PREDATOR_FOOD_VALUE = 5
PREDATOR_REPRODUCTION_TIME = 20 # The chronons before reproducing
MAX_ENTITIES = 500 # The max number of organisms on the board
# The number of entities to delete from the unbalanced side
DELETE_UNBALANCED_ENTITIES = 50
class Entity:
"""
Represents an entity (either prey or predator).
>>> e = Entity(True, coords=(0, 0))
>>> e.prey
True
>>> e.coords
(0, 0)
>>> e.alive
True
"""
def __init__(self, prey: bool, coords: tuple[int, int]) -> None:
self.prey = prey
# The (row, col) pos of the entity
self.coords = coords
self.remaining_reproduction_time = (
PREY_REPRODUCTION_TIME if prey else PREDATOR_REPRODUCTION_TIME
)
self.energy_value = None if prey is True else PREDATOR_INITIAL_ENERGY_VALUE
self.alive = True
def reset_reproduction_time(self) -> None:
"""
>>> e = Entity(True, coords=(0, 0))
>>> e.reset_reproduction_time()
>>> e.remaining_reproduction_time == PREY_REPRODUCTION_TIME
True
>>> e = Entity(False, coords=(0, 0))
>>> e.reset_reproduction_time()
>>> e.remaining_reproduction_time == PREDATOR_REPRODUCTION_TIME
True
"""
self.remaining_reproduction_time = (
PREY_REPRODUCTION_TIME if self.prey is True else PREDATOR_REPRODUCTION_TIME
)
def __repr__(self) -> str:
"""
>>> Entity(prey=True, coords=(1, 1))
Entity(prey=True, coords=(1, 1), remaining_reproduction_time=5)
>>> Entity(prey=False, coords=(2, 1)) # doctest: +NORMALIZE_WHITESPACE
Entity(prey=False, coords=(2, 1),
remaining_reproduction_time=20, energy_value=15)
"""
repr_ = (
f"Entity(prey={self.prey}, coords={self.coords}, "
f"remaining_reproduction_time={self.remaining_reproduction_time}"
)
if self.energy_value is not None:
repr_ += f", energy_value={self.energy_value}"
return f"{repr_})"
class WaTor:
"""
Represents the main Wa-Tor algorithm.
:attr time_passed: A function that is called every time
time passes (a chronon) in order to visually display
the new Wa-Tor planet. The time_passed function can block
using time.sleep to slow the algorithm progression.
>>> wt = WaTor(10, 15)
>>> wt.width
10
>>> wt.height
15
>>> len(wt.planet)
15
>>> len(wt.planet[0])
10
>>> len(wt.get_entities()) == PREDATOR_INITIAL_COUNT + PREY_INITIAL_COUNT
True
"""
time_passed: Callable[["WaTor", int], None] | None
def __init__(self, width: int, height: int) -> None:
self.width = width
self.height = height
self.time_passed = None
self.planet: list[list[Entity | None]] = [[None] * width for _ in range(height)]
# Populate planet with predators and prey randomly
for _ in range(PREY_INITIAL_COUNT):
self.add_entity(prey=True)
for _ in range(PREDATOR_INITIAL_COUNT):
self.add_entity(prey=False)
self.set_planet(self.planet)
def set_planet(self, planet: list[list[Entity | None]]) -> None:
"""
Ease of access for testing
>>> wt = WaTor(WIDTH, HEIGHT)
>>> planet = [
... [None, None, None],
... [None, Entity(True, coords=(1, 1)), None]
... ]
>>> wt.set_planet(planet)
>>> wt.planet == planet
True
>>> wt.width
3
>>> wt.height
2
"""
self.planet = planet
self.width = len(planet[0])
self.height = len(planet)
def add_entity(self, prey: bool) -> None:
"""
Adds an entity, making sure the entity does
not override another entity
>>> wt = WaTor(WIDTH, HEIGHT)
>>> wt.set_planet([[None, None], [None, None]])
>>> wt.add_entity(True)
>>> len(wt.get_entities())
1
>>> wt.add_entity(False)
>>> len(wt.get_entities())
2
"""
while True:
row, col = randint(0, self.height - 1), randint(0, self.width - 1)
if self.planet[row][col] is None:
self.planet[row][col] = Entity(prey=prey, coords=(row, col))
return
def get_entities(self) -> list[Entity]:
"""
Returns a list of all the entities within the planet.
>>> wt = WaTor(WIDTH, HEIGHT)
>>> len(wt.get_entities()) == PREDATOR_INITIAL_COUNT + PREY_INITIAL_COUNT
True
"""
return [entity for column in self.planet for entity in column if entity]
def balance_predators_and_prey(self) -> None:
"""
Balances predators and preys so that prey
can not dominate the predators, blocking up
space for them to reproduce.
>>> wt = WaTor(WIDTH, HEIGHT)
>>> for i in range(2000):
... row, col = i // HEIGHT, i % WIDTH
... wt.planet[row][col] = Entity(True, coords=(row, col))
>>> entities = len(wt.get_entities())
>>> wt.balance_predators_and_prey()
>>> len(wt.get_entities()) == entities
False
"""
entities = self.get_entities()
shuffle(entities)
if len(entities) >= MAX_ENTITIES - MAX_ENTITIES / 10:
prey = [entity for entity in entities if entity.prey]
predators = [entity for entity in entities if not entity.prey]
prey_count, predator_count = len(prey), len(predators)
entities_to_purge = (
prey[:DELETE_UNBALANCED_ENTITIES]
if prey_count > predator_count
else predators[:DELETE_UNBALANCED_ENTITIES]
)
for entity in entities_to_purge:
self.planet[entity.coords[0]][entity.coords[1]] = None
def get_surrounding_prey(self, entity: Entity) -> list[Entity]:
"""
Returns all the prey entities around (N, S, E, W) a predator entity.
Subtly different to the try_to_move_to_unoccupied square.
>>> wt = WaTor(WIDTH, HEIGHT)
>>> wt.set_planet([
... [None, Entity(True, (0, 1)), None],
... [None, Entity(False, (1, 1)), None],
... [None, Entity(True, (2, 1)), None]])
>>> wt.get_surrounding_prey(
... Entity(False, (1, 1))) # doctest: +NORMALIZE_WHITESPACE
[Entity(prey=True, coords=(0, 1), remaining_reproduction_time=5),
Entity(prey=True, coords=(2, 1), remaining_reproduction_time=5)]
>>> wt.set_planet([[Entity(False, (0, 0))]])
>>> wt.get_surrounding_prey(Entity(False, (0, 0)))
[]
>>> wt.set_planet([
... [Entity(True, (0, 0)), Entity(False, (1, 0)), Entity(False, (2, 0))],
... [None, Entity(False, (1, 1)), Entity(True, (2, 1))],
... [None, None, None]])
>>> wt.get_surrounding_prey(Entity(False, (1, 0)))
[Entity(prey=True, coords=(0, 0), remaining_reproduction_time=5)]
"""
row, col = entity.coords
adjacent: list[tuple[int, int]] = [
(row - 1, col), # North
(row + 1, col), # South
(row, col - 1), # West
(row, col + 1), # East
]
return [
ent
for r, c in adjacent
if 0 <= r < self.height
and 0 <= c < self.width
and (ent := self.planet[r][c]) is not None
and ent.prey
]
def move_and_reproduce(
self, entity: Entity, direction_orders: list[Literal["N", "E", "S", "W"]]
) -> None:
"""
Attempts to move to an unoccupied neighbouring square
in either of the four directions (North, South, East, West).
If the move was successful and the remaining_reproduction time is
equal to 0, then a new prey or predator can also be created
in the previous square.
:param direction_orders: Ordered list (like priority queue) depicting
order to attempt to move. Removes any systematic
approach of checking neighbouring squares.
>>> planet = [
... [None, None, None],
... [None, Entity(True, coords=(1, 1)), None],
... [None, None, None]
... ]
>>> wt = WaTor(WIDTH, HEIGHT)
>>> wt.set_planet(planet)
>>> wt.move_and_reproduce(Entity(True, coords=(1, 1)), direction_orders=["N"])
>>> wt.planet # doctest: +NORMALIZE_WHITESPACE
[[None, Entity(prey=True, coords=(0, 1), remaining_reproduction_time=4), None],
[None, None, None],
[None, None, None]]
>>> wt.planet[0][0] = Entity(True, coords=(0, 0))
>>> wt.move_and_reproduce(Entity(True, coords=(0, 1)),
... direction_orders=["N", "W", "E", "S"])
>>> wt.planet # doctest: +NORMALIZE_WHITESPACE
[[Entity(prey=True, coords=(0, 0), remaining_reproduction_time=5), None,
Entity(prey=True, coords=(0, 2), remaining_reproduction_time=4)],
[None, None, None],
[None, None, None]]
>>> wt.planet[0][1] = wt.planet[0][2]
>>> wt.planet[0][2] = None
>>> wt.move_and_reproduce(Entity(True, coords=(0, 1)),
... direction_orders=["N", "W", "S", "E"])
>>> wt.planet # doctest: +NORMALIZE_WHITESPACE
[[Entity(prey=True, coords=(0, 0), remaining_reproduction_time=5), None, None],
[None, Entity(prey=True, coords=(1, 1), remaining_reproduction_time=4), None],
[None, None, None]]
>>> wt = WaTor(WIDTH, HEIGHT)
>>> reproducable_entity = Entity(False, coords=(0, 1))
>>> reproducable_entity.remaining_reproduction_time = 0
>>> wt.planet = [[None, reproducable_entity]]
>>> wt.move_and_reproduce(reproducable_entity,
... direction_orders=["N", "W", "S", "E"])
>>> wt.planet # doctest: +NORMALIZE_WHITESPACE
[[Entity(prey=False, coords=(0, 0),
remaining_reproduction_time=20, energy_value=15),
Entity(prey=False, coords=(0, 1), remaining_reproduction_time=20,
energy_value=15)]]
"""
row, col = coords = entity.coords
adjacent_squares: dict[Literal["N", "E", "S", "W"], tuple[int, int]] = {
"N": (row - 1, col), # North
"S": (row + 1, col), # South
"W": (row, col - 1), # West
"E": (row, col + 1), # East
}
# Weight adjacent locations
adjacent: list[tuple[int, int]] = []
for order in direction_orders:
adjacent.append(adjacent_squares[order])
for r, c in adjacent:
if (
0 <= r < self.height
and 0 <= c < self.width
and self.planet[r][c] is None
):
# Move entity to empty adjacent square
self.planet[r][c] = entity
self.planet[row][col] = None
entity.coords = (r, c)
break
# (2.) See if it possible to reproduce in previous square
if coords != entity.coords and entity.remaining_reproduction_time <= 0:
# Check if the entities on the planet is less than the max limit
if len(self.get_entities()) < MAX_ENTITIES:
# Reproduce in previous square
self.planet[row][col] = Entity(prey=entity.prey, coords=coords)
entity.reset_reproduction_time()
else:
entity.remaining_reproduction_time -= 1
def perform_prey_actions(
self, entity: Entity, direction_orders: list[Literal["N", "E", "S", "W"]]
) -> None:
"""
Performs the actions for a prey entity
For prey the rules are:
1. At each chronon, a prey moves randomly to one of the adjacent unoccupied
squares. If there are no free squares, no movement takes place.
2. Once a prey has survived a certain number of chronons it may reproduce.
This is done as it moves to a neighbouring square,
leaving behind a new prey in its old position.
Its reproduction time is also reset to zero.
>>> wt = WaTor(WIDTH, HEIGHT)
>>> reproducable_entity = Entity(True, coords=(0, 1))
>>> reproducable_entity.remaining_reproduction_time = 0
>>> wt.planet = [[None, reproducable_entity]]
>>> wt.perform_prey_actions(reproducable_entity,
... direction_orders=["N", "W", "S", "E"])
>>> wt.planet # doctest: +NORMALIZE_WHITESPACE
[[Entity(prey=True, coords=(0, 0), remaining_reproduction_time=5),
Entity(prey=True, coords=(0, 1), remaining_reproduction_time=5)]]
"""
self.move_and_reproduce(entity, direction_orders)
def perform_predator_actions(
self,
entity: Entity,
occupied_by_prey_coords: tuple[int, int] | None,
direction_orders: list[Literal["N", "E", "S", "W"]],
) -> None:
"""
Performs the actions for a predator entity
:param occupied_by_prey_coords: Move to this location if there is prey there
For predators the rules are:
1. At each chronon, a predator moves randomly to an adjacent square occupied
by a prey. If there is none, the predator moves to a random adjacent
unoccupied square. If there are no free squares, no movement takes place.
2. At each chronon, each predator is deprived of a unit of energy.
3. Upon reaching zero energy, a predator dies.
4. If a predator moves to a square occupied by a prey,
it eats the prey and earns a certain amount of energy.
5. Once a predator has survived a certain number of chronons
it may reproduce in exactly the same way as the prey.
>>> wt = WaTor(WIDTH, HEIGHT)
>>> wt.set_planet([[Entity(True, coords=(0, 0)), Entity(False, coords=(0, 1))]])
>>> wt.perform_predator_actions(Entity(False, coords=(0, 1)), (0, 0), [])
>>> wt.planet # doctest: +NORMALIZE_WHITESPACE
[[Entity(prey=False, coords=(0, 0),
remaining_reproduction_time=20, energy_value=19), None]]
"""
assert entity.energy_value is not None # [type checking]
# (3.) If the entity has 0 energy, it will die
if entity.energy_value == 0:
self.planet[entity.coords[0]][entity.coords[1]] = None
return
# (1.) Move to entity if possible
if occupied_by_prey_coords is not None:
# Kill the prey
prey = self.planet[occupied_by_prey_coords[0]][occupied_by_prey_coords[1]]
assert prey is not None
prey.alive = False
# Move onto prey
self.planet[occupied_by_prey_coords[0]][occupied_by_prey_coords[1]] = entity
self.planet[entity.coords[0]][entity.coords[1]] = None
entity.coords = occupied_by_prey_coords
# (4.) Eats the prey and earns energy
entity.energy_value += PREDATOR_FOOD_VALUE
else:
# (5.) If it has survived the certain number of chronons it will also
# reproduce in this function
self.move_and_reproduce(entity, direction_orders)
# (2.) Each chronon, the predator is deprived of a unit of energy
entity.energy_value -= 1
def run(self, *, iteration_count: int) -> None:
"""
Emulate time passing by looping iteration_count times
>>> wt = WaTor(WIDTH, HEIGHT)
>>> wt.run(iteration_count=PREDATOR_INITIAL_ENERGY_VALUE - 1)
>>> len(list(filter(lambda entity: entity.prey is False,
... wt.get_entities()))) >= PREDATOR_INITIAL_COUNT
True
"""
for iter_num in range(iteration_count):
# Generate list of all entities in order to randomly
# pop an entity at a time to simulate true randomness
# This removes the systematic approach of iterating
# through each entity width by height
all_entities = self.get_entities()
for __ in range(len(all_entities)):
entity = all_entities.pop(randint(0, len(all_entities) - 1))
if entity.alive is False:
continue
directions: list[Literal["N", "E", "S", "W"]] = ["N", "E", "S", "W"]
shuffle(directions) # Randomly shuffle directions
if entity.prey:
self.perform_prey_actions(entity, directions)
else:
# Create list of surrounding prey
surrounding_prey = self.get_surrounding_prey(entity)
surrounding_prey_coords = None
if surrounding_prey:
# Again, randomly shuffle directions
shuffle(surrounding_prey)
surrounding_prey_coords = surrounding_prey[0].coords
self.perform_predator_actions(
entity, surrounding_prey_coords, directions
)
# Balance out the predators and prey
self.balance_predators_and_prey()
if self.time_passed is not None:
# Call time_passed function for Wa-Tor planet
# visualisation in a terminal or a graph.
self.time_passed(self, iter_num)
def visualise(wt: WaTor, iter_number: int, *, colour: bool = True) -> None:
"""
Visually displays the Wa-Tor planet using
an ascii code in terminal to clear and re-print
the Wa-Tor planet at intervals.
Uses ascii colour codes to colourfully display
the predators and prey.
(0x60f197) Prey = #
(0xfffff) Predator = x
>>> wt = WaTor(30, 30)
>>> wt.set_planet([
... [Entity(True, coords=(0, 0)), Entity(False, coords=(0, 1)), None],
... [Entity(False, coords=(1, 0)), None, Entity(False, coords=(1, 2))],
... [None, Entity(True, coords=(2, 1)), None]
... ])
>>> visualise(wt, 0, colour=False) # doctest: +NORMALIZE_WHITESPACE
# x .
x . x
. # .
<BLANKLINE>
Iteration: 0 | Prey count: 2 | Predator count: 3 |
"""
if colour:
__import__("os").system("")
print("\x1b[0;0H\x1b[2J\x1b[?25l")
reprint = "\x1b[0;0H" if colour else ""
ansi_colour_end = "\x1b[0m " if colour else " "
planet = wt.planet
output = ""
# Iterate over every entity in the planet
for row in planet:
for entity in row:
if entity is None:
output += " . "
else:
if colour is True:
output += (
"\x1b[38;2;96;241;151m"
if entity.prey
else "\x1b[38;2;255;255;15m"
)
output += f" {'#' if entity.prey else 'x'}{ansi_colour_end}"
output += "\n"
entities = wt.get_entities()
prey_count = sum(entity.prey for entity in entities)
print(
f"{output}\n Iteration: {iter_number} | Prey count: {prey_count} | "
f"Predator count: {len(entities) - prey_count} | {reprint}"
)
# Block the thread to be able to visualise seeing the algorithm
sleep(0.05)
if __name__ == "__main__":
import doctest
doctest.testmod()
wt = WaTor(WIDTH, HEIGHT)
wt.time_passed = visualise
wt.run(iteration_count=100_000)

View File

@ -2,7 +2,8 @@ import os
import random
import sys
from . import cryptomath_module, rabin_miller
from . import cryptomath_module as cryptoMath # noqa: N812
from . import rabin_miller as rabinMiller # noqa: N812
def main() -> None:
@ -12,26 +13,20 @@ def main() -> None:
def generate_key(key_size: int) -> tuple[tuple[int, int], tuple[int, int]]:
"""
>>> random.seed(0) # for repeatability
>>> public_key, private_key = generate_key(8)
>>> public_key
(26569, 239)
>>> private_key
(26569, 2855)
"""
p = rabin_miller.generate_large_prime(key_size)
q = rabin_miller.generate_large_prime(key_size)
print("Generating prime p...")
p = rabinMiller.generate_large_prime(key_size)
print("Generating prime q...")
q = rabinMiller.generate_large_prime(key_size)
n = p * q
# Generate e that is relatively prime to (p - 1) * (q - 1)
print("Generating e that is relatively prime to (p - 1) * (q - 1)...")
while True:
e = random.randrange(2 ** (key_size - 1), 2 ** (key_size))
if cryptomath_module.gcd(e, (p - 1) * (q - 1)) == 1:
if cryptoMath.gcd(e, (p - 1) * (q - 1)) == 1:
break
# Calculate d that is mod inverse of e
d = cryptomath_module.find_mod_inverse(e, (p - 1) * (q - 1))
print("Calculating d that is mod inverse of e...")
d = cryptoMath.find_mod_inverse(e, (p - 1) * (q - 1))
public_key = (n, e)
private_key = (n, d)

View File

@ -32,13 +32,13 @@ def main() -> None:
letter_code = random_chars(32)
file_name = paths[index].split(os.sep)[-1].rsplit(".", 1)[0]
file_root = f"{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}"
cv2.imwrite(f"{file_root}.jpg", image, [cv2.IMWRITE_JPEG_QUALITY, 85])
cv2.imwrite(f"/{file_root}.jpg", image, [cv2.IMWRITE_JPEG_QUALITY, 85])
print(f"Success {index+1}/{len(new_images)} with {file_name}")
annos_list = []
for anno in new_annos[index]:
obj = f"{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}"
annos_list.append(obj)
with open(f"{file_root}.txt", "w") as outfile:
with open(f"/{file_root}.txt", "w") as outfile:
outfile.write("\n".join(line for line in annos_list))

View File

@ -1,4 +1,13 @@
def octal_to_binary(octal_number: str) -> str:
def octal_to_binary(octal_number):
"""
Convert an octal number to binary.
Args:
octal_number (str): The octal number as a string.
Returns:
str: The binary representation of the octal number.
"""
binary_number = ""
octal_digits = "01234567"

View File

@ -1,62 +1,5 @@
r"""
"""
A binary search Tree
Example
8
/ \
3 10
/ \ \
1 6 14
/ \ /
4 7 13
>>> t = BinarySearchTree()
>>> t.insert(8, 3, 6, 1, 10, 14, 13, 4, 7)
>>> print(" ".join(repr(i.value) for i in t.traversal_tree()))
8 3 1 6 4 7 10 14 13
>>> print(" ".join(repr(i.value) for i in t.traversal_tree(postorder)))
1 4 7 6 3 13 14 10 8
>>> t.remove(20)
Traceback (most recent call last):
...
ValueError: Value 20 not found
>>> BinarySearchTree().search(6)
Traceback (most recent call last):
...
IndexError: Warning: Tree is empty! please use another.
Other example:
>>> testlist = (8, 3, 6, 1, 10, 14, 13, 4, 7)
>>> t = BinarySearchTree()
>>> for i in testlist:
... t.insert(i)
Prints all the elements of the list in order traversal
>>> print(t)
{'8': ({'3': (1, {'6': (4, 7)})}, {'10': (None, {'14': (13, None)})})}
Test existence
>>> t.search(6) is not None
True
>>> t.search(-1) is not None
False
>>> t.search(6).is_right
True
>>> t.search(1).is_right
False
>>> t.get_max().value
14
>>> t.get_min().value
1
>>> t.empty()
False
>>> for i in testlist:
... t.remove(i)
>>> t.empty()
True
"""
from collections.abc import Iterable
@ -77,10 +20,6 @@ class Node:
return str(self.value)
return pformat({f"{self.value}": (self.left, self.right)}, indent=1)
@property
def is_right(self) -> bool:
return self.parent is not None and self is self.parent.right
class BinarySearchTree:
def __init__(self, root: Node | None = None):
@ -96,13 +35,18 @@ class BinarySearchTree:
if new_children is not None: # reset its kids
new_children.parent = node.parent
if node.parent is not None: # reset its parent
if node.is_right: # If it is the right child
if self.is_right(node): # If it is the right children
node.parent.right = new_children
else:
node.parent.left = new_children
else:
self.root = new_children
def is_right(self, node: Node) -> bool:
if node.parent and node.parent.right:
return node == node.parent.right
return False
def empty(self) -> bool:
return self.root is None
@ -175,26 +119,22 @@ class BinarySearchTree:
return node
def remove(self, value: int) -> None:
# Look for the node with that label
node = self.search(value)
if node is None:
msg = f"Value {value} not found"
raise ValueError(msg)
if node.left is None and node.right is None: # If it has no children
self.__reassign_nodes(node, None)
elif node.left is None: # Has only right children
self.__reassign_nodes(node, node.right)
elif node.right is None: # Has only left children
self.__reassign_nodes(node, node.left)
else:
predecessor = self.get_max(
node.left
) # Gets the max value of the left branch
self.remove(predecessor.value) # type: ignore
node.value = (
predecessor.value # type: ignore
) # Assigns the value to the node to delete and keep tree structure
node = self.search(value) # Look for the node with that label
if node is not None:
if node.left is None and node.right is None: # If it has no children
self.__reassign_nodes(node, None)
elif node.left is None: # Has only right children
self.__reassign_nodes(node, node.right)
elif node.right is None: # Has only left children
self.__reassign_nodes(node, node.left)
else:
tmp_node = self.get_max(
node.left
) # Gets the max value of the left branch
self.remove(tmp_node.value) # type: ignore
node.value = (
tmp_node.value # type: ignore
) # Assigns the value to the node to delete and keep tree structure
def preorder_traverse(self, node: Node | None) -> Iterable:
if node is not None:
@ -237,6 +177,55 @@ def postorder(curr_node: Node | None) -> list[Node]:
return node_list
def binary_search_tree() -> None:
r"""
Example
8
/ \
3 10
/ \ \
1 6 14
/ \ /
4 7 13
>>> t = BinarySearchTree()
>>> t.insert(8, 3, 6, 1, 10, 14, 13, 4, 7)
>>> print(" ".join(repr(i.value) for i in t.traversal_tree()))
8 3 1 6 4 7 10 14 13
>>> print(" ".join(repr(i.value) for i in t.traversal_tree(postorder)))
1 4 7 6 3 13 14 10 8
>>> BinarySearchTree().search(6)
Traceback (most recent call last):
...
IndexError: Warning: Tree is empty! please use another.
"""
testlist = (8, 3, 6, 1, 10, 14, 13, 4, 7)
t = BinarySearchTree()
for i in testlist:
t.insert(i)
# Prints all the elements of the list in order traversal
print(t)
if t.search(6) is not None:
print("The value 6 exists")
else:
print("The value 6 doesn't exist")
if t.search(-1) is not None:
print("The value -1 exists")
else:
print("The value -1 doesn't exist")
if not t.empty():
print("Max Value: ", t.get_max().value) # type: ignore
print("Min Value: ", t.get_min().value) # type: ignore
for i in testlist:
t.remove(i)
print(t)
if __name__ == "__main__":
import doctest

View File

@ -21,7 +21,6 @@ def rgb2gray(rgb: np.array) -> np.array:
def gray2binary(gray: np.array) -> np.array:
"""
Return binary image from gray image
>>> gray2binary(np.array([[127, 255, 0]]))
array([[False, True, False]])
>>> gray2binary(np.array([[0]]))

View File

@ -10,12 +10,12 @@ def get_rotation(
) -> np.ndarray:
"""
Get image rotation
:param img: np.ndarray
:param img: np.array
:param pt1: 3x2 list
:param pt2: 3x2 list
:param rows: columns image shape
:param cols: rows image shape
:return: np.ndarray
:return: np.array
"""
matrix = cv2.getAffineTransform(pt1, pt2)
return cv2.warpAffine(img, matrix, (rows, cols))

View File

@ -1,97 +0,0 @@
"""
Regex matching check if a text matches pattern or not.
Pattern:
'.' Matches any single character.
'*' Matches zero or more of the preceding element.
More info:
https://medium.com/trick-the-interviwer/regular-expression-matching-9972eb74c03
"""
def recursive_match(text: str, pattern: str) -> bool:
"""
Recursive matching algorithm.
Time complexity: O(2 ^ (|text| + |pattern|))
Space complexity: Recursion depth is O(|text| + |pattern|).
:param text: Text to match.
:param pattern: Pattern to match.
:return: True if text matches pattern, False otherwise.
>>> recursive_match('abc', 'a.c')
True
>>> recursive_match('abc', 'af*.c')
True
>>> recursive_match('abc', 'a.c*')
True
>>> recursive_match('abc', 'a.c*d')
False
>>> recursive_match('aa', '.*')
True
"""
if not pattern:
return not text
if not text:
return pattern[-1] == "*" and recursive_match(text, pattern[:-2])
if text[-1] == pattern[-1] or pattern[-1] == ".":
return recursive_match(text[:-1], pattern[:-1])
if pattern[-1] == "*":
return recursive_match(text[:-1], pattern) or recursive_match(
text, pattern[:-2]
)
return False
def dp_match(text: str, pattern: str) -> bool:
"""
Dynamic programming matching algorithm.
Time complexity: O(|text| * |pattern|)
Space complexity: O(|text| * |pattern|)
:param text: Text to match.
:param pattern: Pattern to match.
:return: True if text matches pattern, False otherwise.
>>> dp_match('abc', 'a.c')
True
>>> dp_match('abc', 'af*.c')
True
>>> dp_match('abc', 'a.c*')
True
>>> dp_match('abc', 'a.c*d')
False
>>> dp_match('aa', '.*')
True
"""
m = len(text)
n = len(pattern)
dp = [[False for _ in range(n + 1)] for _ in range(m + 1)]
dp[0][0] = True
for j in range(1, n + 1):
dp[0][j] = pattern[j - 1] == "*" and dp[0][j - 2]
for i in range(1, m + 1):
for j in range(1, n + 1):
if pattern[j - 1] in {".", text[i - 1]}:
dp[i][j] = dp[i - 1][j - 1]
elif pattern[j - 1] == "*":
dp[i][j] = dp[i][j - 2]
if pattern[j - 2] in {".", text[i - 1]}:
dp[i][j] |= dp[i - 1][j]
else:
dp[i][j] = False
return dp[m][n]
if __name__ == "__main__":
import doctest
doctest.testmod()

View File

@ -1,24 +0,0 @@
# Tribonacci sequence using Dynamic Programming
def tribonacci(num: int) -> list[int]:
"""
Given a number, return first n Tribonacci Numbers.
>>> tribonacci(5)
[0, 0, 1, 1, 2]
>>> tribonacci(8)
[0, 0, 1, 1, 2, 4, 7, 13]
"""
dp = [0] * num
dp[2] = 1
for i in range(3, num):
dp[i] = dp[i - 1] + dp[i - 2] + dp[i - 3]
return dp
if __name__ == "__main__":
import doctest
doctest.testmod()

View File

@ -6,32 +6,14 @@ from __future__ import annotations
Path = list[tuple[int, int]]
# 0's are free path whereas 1's are obstacles
TEST_GRIDS = [
[
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
],
[
[0, 0, 0, 1, 1, 0, 0],
[0, 0, 0, 0, 1, 0, 1],
[0, 0, 0, 1, 1, 0, 0],
[0, 1, 0, 0, 1, 0, 0],
[1, 0, 0, 1, 1, 0, 1],
[0, 0, 0, 0, 0, 0, 0],
],
[
[0, 0, 1, 0, 0],
[0, 1, 0, 0, 0],
[0, 0, 1, 0, 1],
[1, 0, 0, 1, 1],
[0, 0, 0, 0, 0],
],
grid = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
delta = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right
@ -83,14 +65,10 @@ class Node:
def __lt__(self, other) -> bool:
return self.f_cost < other.f_cost
def __eq__(self, other) -> bool:
return self.pos == other.pos
class GreedyBestFirst:
"""
>>> grid = TEST_GRIDS[2]
>>> gbf = GreedyBestFirst(grid, (0, 0), (len(grid) - 1, len(grid[0]) - 1))
>>> gbf = GreedyBestFirst((0, 0), (len(grid) - 1, len(grid[0]) - 1))
>>> [x.pos for x in gbf.get_successors(gbf.start)]
[(1, 0), (0, 1)]
>>> (gbf.start.pos_y + delta[3][0], gbf.start.pos_x + delta[3][1])
@ -100,14 +78,11 @@ class GreedyBestFirst:
>>> gbf.retrace_path(gbf.start)
[(0, 0)]
>>> gbf.search() # doctest: +NORMALIZE_WHITESPACE
[(0, 0), (1, 0), (2, 0), (2, 1), (3, 1), (4, 1), (4, 2), (4, 3),
(4, 4)]
[(0, 0), (1, 0), (2, 0), (3, 0), (3, 1), (4, 1), (5, 1), (6, 1),
(6, 2), (6, 3), (5, 3), (5, 4), (5, 5), (6, 5), (6, 6)]
"""
def __init__(
self, grid: list[list[int]], start: tuple[int, int], goal: tuple[int, int]
):
self.grid = grid
def __init__(self, start: tuple[int, int], goal: tuple[int, int]):
self.start = Node(start[1], start[0], goal[1], goal[0], 0, None)
self.target = Node(goal[1], goal[0], goal[1], goal[0], 99999, None)
@ -139,6 +114,14 @@ class GreedyBestFirst:
if child_node not in self.open_nodes:
self.open_nodes.append(child_node)
else:
# retrieve the best current path
better_node = self.open_nodes.pop(self.open_nodes.index(child_node))
if child_node.g_cost < better_node.g_cost:
self.open_nodes.append(child_node)
else:
self.open_nodes.append(better_node)
if not self.reached:
return [self.start.pos]
@ -148,22 +131,28 @@ class GreedyBestFirst:
"""
Returns a list of successors (both in the grid and free spaces)
"""
return [
Node(
pos_x,
pos_y,
self.target.pos_x,
self.target.pos_y,
parent.g_cost + 1,
parent,
successors = []
for action in delta:
pos_x = parent.pos_x + action[1]
pos_y = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0]) - 1 and 0 <= pos_y <= len(grid) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(
pos_x,
pos_y,
self.target.pos_y,
self.target.pos_x,
parent.g_cost + 1,
parent,
)
)
for action in delta
if (
0 <= (pos_x := parent.pos_x + action[1]) < len(self.grid[0])
and 0 <= (pos_y := parent.pos_y + action[0]) < len(self.grid)
and self.grid[pos_y][pos_x] == 0
)
]
return successors
def retrace_path(self, node: Node | None) -> Path:
"""
@ -179,21 +168,18 @@ class GreedyBestFirst:
if __name__ == "__main__":
for idx, grid in enumerate(TEST_GRIDS):
print(f"==grid-{idx + 1}==")
init = (0, 0)
goal = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
print("------")
greedy_bf = GreedyBestFirst(init, goal)
path = greedy_bf.search()
if path:
for pos_x, pos_y in path:
grid[pos_x][pos_y] = 2
init = (0, 0)
goal = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
print("------")
greedy_bf = GreedyBestFirst(grid, init, goal)
path = greedy_bf.search()
if path:
for pos_x, pos_y in path:
grid[pos_x][pos_y] = 2
for elem in grid:
print(elem)

View File

@ -43,43 +43,62 @@ def points_to_polynomial(coordinates: list[list[int]]) -> str:
x = len(coordinates)
count_of_line = 0
matrix: list[list[float]] = []
# put the x and x to the power values in a matrix
matrix: list[list[float]] = [
[
coordinates[count_of_line][0] ** (x - (count_in_line + 1))
for count_in_line in range(x)
]
for count_of_line in range(x)
]
while count_of_line < x:
count_in_line = 0
a = coordinates[count_of_line][0]
count_line: list[float] = []
while count_in_line < x:
count_line.append(a ** (x - (count_in_line + 1)))
count_in_line += 1
matrix.append(count_line)
count_of_line += 1
count_of_line = 0
# put the y values into a vector
vector: list[float] = [coordinates[count_of_line][1] for count_of_line in range(x)]
vector: list[float] = []
while count_of_line < x:
vector.append(coordinates[count_of_line][1])
count_of_line += 1
for count in range(x):
for number in range(x):
if count == number:
continue
fraction = matrix[number][count] / matrix[count][count]
count = 0
while count < x:
zahlen = 0
while zahlen < x:
if count == zahlen:
zahlen += 1
if zahlen == x:
break
bruch = matrix[zahlen][count] / matrix[count][count]
for counting_columns, item in enumerate(matrix[count]):
# manipulating all the values in the matrix
matrix[number][counting_columns] -= item * fraction
matrix[zahlen][counting_columns] -= item * bruch
# manipulating the values in the vector
vector[number] -= vector[count] * fraction
vector[zahlen] -= vector[count] * bruch
zahlen += 1
count += 1
count = 0
# make solutions
solution: list[str] = [
str(vector[count] / matrix[count][count]) for count in range(x)
]
solution: list[str] = []
while count < x:
solution.append(str(vector[count] / matrix[count][count]))
count += 1
count = 0
solved = "f(x)="
for count in range(x):
while count < x:
remove_e: list[str] = solution[count].split("E")
if len(remove_e) > 1:
solution[count] = f"{remove_e[0]}*10^{remove_e[1]}"
solved += f"x^{x - (count + 1)}*{solution[count]}"
if count + 1 != x:
solved += "+"
count += 1
return solved

View File

@ -1,4 +1,4 @@
total_users,total_events,days
total_user,total_events,days
18231,0.0,1
22621,1.0,2
15675,0.0,3

1 total_users total_user total_events days
2 18231 0.0 1
3 22621 1.0 2
4 15675 0.0 3

View File

@ -1,6 +1,6 @@
"""
this is code for forecasting
but I modified it and used it for safety checker of data
but i modified it and used it for safety checker of data
for ex: you have an online shop and for some reason some data are
missing (the amount of data that u expected are not supposed to be)
then we can use it
@ -11,8 +11,6 @@ missing (the amount of data that u expected are not supposed to be)
u can just adjust it for ur own purpose
"""
from warnings import simplefilter
import numpy as np
import pandas as pd
from sklearn.preprocessing import Normalizer
@ -47,10 +45,8 @@ def sarimax_predictor(train_user: list, train_match: list, test_match: list) ->
>>> sarimax_predictor([4,2,6,8], [3,1,2,4], [2])
6.6666671111109626
"""
# Suppress the User Warning raised by SARIMAX due to insufficient observations
simplefilter("ignore", UserWarning)
order = (1, 2, 1)
seasonal_order = (1, 1, 1, 7)
seasonal_order = (1, 1, 0, 7)
model = SARIMAX(
train_user, exog=train_match, order=order, seasonal_order=seasonal_order
)
@ -106,10 +102,6 @@ def data_safety_checker(list_vote: list, actual_result: float) -> bool:
"""
safe = 0
not_safe = 0
if not isinstance(actual_result, float):
raise TypeError("Actual result should be float. Value passed is a list")
for i in list_vote:
if i > actual_result:
safe = not_safe + 1
@ -122,11 +114,16 @@ def data_safety_checker(list_vote: list, actual_result: float) -> bool:
if __name__ == "__main__":
# data_input_df = pd.read_csv("ex_data.csv", header=None)
data_input = [[18231, 0.0, 1], [22621, 1.0, 2], [15675, 0.0, 3], [23583, 1.0, 4]]
data_input_df = pd.DataFrame(
data_input, columns=["total_user", "total_even", "days"]
)
"""
data column = total user in a day, how much online event held in one day,
what day is that(sunday-saturday)
"""
data_input_df = pd.read_csv("ex_data.csv")
# start normalization
normalize_df = Normalizer().fit_transform(data_input_df.values)
@ -141,23 +138,23 @@ if __name__ == "__main__":
x_test = x[len(x) - 1 :]
# for linear regression & sarimax
train_date = total_date[: len(total_date) - 1]
train_user = total_user[: len(total_user) - 1]
train_match = total_match[: len(total_match) - 1]
trn_date = total_date[: len(total_date) - 1]
trn_user = total_user[: len(total_user) - 1]
trn_match = total_match[: len(total_match) - 1]
test_date = total_date[len(total_date) - 1 :]
test_user = total_user[len(total_user) - 1 :]
test_match = total_match[len(total_match) - 1 :]
tst_date = total_date[len(total_date) - 1 :]
tst_user = total_user[len(total_user) - 1 :]
tst_match = total_match[len(total_match) - 1 :]
# voting system with forecasting
res_vote = [
linear_regression_prediction(
train_date, train_user, train_match, test_date, test_match
trn_date, trn_user, trn_match, tst_date, tst_match
),
sarimax_predictor(train_user, train_match, test_match),
support_vector_regressor(x_train, x_test, train_user),
sarimax_predictor(trn_user, trn_match, tst_match),
support_vector_regressor(x_train, x_test, trn_user),
]
# check the safety of today's data
not_str = "" if data_safety_checker(res_vote, test_user[0]) else "not "
print(f"Today's data is {not_str}safe.")
not_str = "" if data_safety_checker(res_vote, tst_user) else "not "
print("Today's data is {not_str}safe.")

View File

@ -19,9 +19,7 @@ def median(nums: list) -> int | float:
Returns:
Median.
"""
# The sorted function returns list[SupportsRichComparisonT@sorted]
# which does not support `+`
sorted_list: list[int] = sorted(nums)
sorted_list = sorted(nums)
length = len(sorted_list)
mid_index = length >> 1
return (

View File

@ -1,51 +0,0 @@
"""
Finding the continuous fraction for a rational number using python
https://en.wikipedia.org/wiki/Continued_fraction
"""
from fractions import Fraction
def continued_fraction(num: Fraction) -> list[int]:
"""
:param num:
Fraction of the number whose continued fractions to be found.
Use Fraction(str(number)) for more accurate results due to
float inaccuracies.
:return:
The continued fraction of rational number.
It is the all commas in the (n + 1)-tuple notation.
>>> continued_fraction(Fraction(2))
[2]
>>> continued_fraction(Fraction("3.245"))
[3, 4, 12, 4]
>>> continued_fraction(Fraction("2.25"))
[2, 4]
>>> continued_fraction(1/Fraction("2.25"))
[0, 2, 4]
>>> continued_fraction(Fraction("415/93"))
[4, 2, 6, 7]
"""
numerator, denominator = num.as_integer_ratio()
continued_fraction_list: list[int] = []
while True:
integer_part = int(numerator / denominator)
continued_fraction_list.append(integer_part)
numerator -= integer_part * denominator
if numerator == 0:
break
numerator, denominator = denominator, numerator
return continued_fraction_list
if __name__ == "__main__":
import doctest
doctest.testmod()
print("Continued Fraction of 0.84375 is: ", continued_fraction(Fraction("0.84375")))

View File

@ -5,7 +5,7 @@ import numpy as np
def euler_modified(
ode_func: Callable, y0: float, x0: float, step_size: float, x_end: float
) -> np.ndarray:
) -> np.array:
"""
Calculate solution at each step to an ODE using Euler's Modified Method
The Euler Method is straightforward to implement, but can't give accurate solutions.

View File

@ -1,23 +1,23 @@
from __future__ import annotations
def find_max_iterative(nums: list[int | float]) -> int | float:
def find_max(nums: list[int | float]) -> int | float:
"""
>>> for nums in ([3, 2, 1], [-3, -2, -1], [3, -3, 0], [3.0, 3.1, 2.9]):
... find_max_iterative(nums) == max(nums)
... find_max(nums) == max(nums)
True
True
True
True
>>> find_max_iterative([2, 4, 9, 7, 19, 94, 5])
>>> find_max([2, 4, 9, 7, 19, 94, 5])
94
>>> find_max_iterative([])
>>> find_max([])
Traceback (most recent call last):
...
ValueError: find_max_iterative() arg is an empty sequence
ValueError: find_max() arg is an empty sequence
"""
if len(nums) == 0:
raise ValueError("find_max_iterative() arg is an empty sequence")
raise ValueError("find_max() arg is an empty sequence")
max_num = nums[0]
for x in nums:
if x > max_num:
@ -25,59 +25,6 @@ def find_max_iterative(nums: list[int | float]) -> int | float:
return max_num
# Divide and Conquer algorithm
def find_max_recursive(nums: list[int | float], left: int, right: int) -> int | float:
"""
find max value in list
:param nums: contains elements
:param left: index of first element
:param right: index of last element
:return: max in nums
>>> for nums in ([3, 2, 1], [-3, -2, -1], [3, -3, 0], [3.0, 3.1, 2.9]):
... find_max_recursive(nums, 0, len(nums) - 1) == max(nums)
True
True
True
True
>>> nums = [1, 3, 5, 7, 9, 2, 4, 6, 8, 10]
>>> find_max_recursive(nums, 0, len(nums) - 1) == max(nums)
True
>>> find_max_recursive([], 0, 0)
Traceback (most recent call last):
...
ValueError: find_max_recursive() arg is an empty sequence
>>> find_max_recursive(nums, 0, len(nums)) == max(nums)
Traceback (most recent call last):
...
IndexError: list index out of range
>>> find_max_recursive(nums, -len(nums), -1) == max(nums)
True
>>> find_max_recursive(nums, -len(nums) - 1, -1) == max(nums)
Traceback (most recent call last):
...
IndexError: list index out of range
"""
if len(nums) == 0:
raise ValueError("find_max_recursive() arg is an empty sequence")
if (
left >= len(nums)
or left < -len(nums)
or right >= len(nums)
or right < -len(nums)
):
raise IndexError("list index out of range")
if left == right:
return nums[left]
mid = (left + right) >> 1 # the middle
left_max = find_max_recursive(nums, left, mid) # find max in range[left, mid]
right_max = find_max_recursive(
nums, mid + 1, right
) # find max in range[mid + 1, right]
return left_max if left_max >= right_max else right_max
if __name__ == "__main__":
import doctest

View File

@ -0,0 +1,58 @@
from __future__ import annotations
# Divide and Conquer algorithm
def find_max(nums: list[int | float], left: int, right: int) -> int | float:
"""
find max value in list
:param nums: contains elements
:param left: index of first element
:param right: index of last element
:return: max in nums
>>> for nums in ([3, 2, 1], [-3, -2, -1], [3, -3, 0], [3.0, 3.1, 2.9]):
... find_max(nums, 0, len(nums) - 1) == max(nums)
True
True
True
True
>>> nums = [1, 3, 5, 7, 9, 2, 4, 6, 8, 10]
>>> find_max(nums, 0, len(nums) - 1) == max(nums)
True
>>> find_max([], 0, 0)
Traceback (most recent call last):
...
ValueError: find_max() arg is an empty sequence
>>> find_max(nums, 0, len(nums)) == max(nums)
Traceback (most recent call last):
...
IndexError: list index out of range
>>> find_max(nums, -len(nums), -1) == max(nums)
True
>>> find_max(nums, -len(nums) - 1, -1) == max(nums)
Traceback (most recent call last):
...
IndexError: list index out of range
"""
if len(nums) == 0:
raise ValueError("find_max() arg is an empty sequence")
if (
left >= len(nums)
or left < -len(nums)
or right >= len(nums)
or right < -len(nums)
):
raise IndexError("list index out of range")
if left == right:
return nums[left]
mid = (left + right) >> 1 # the middle
left_max = find_max(nums, left, mid) # find max in range[left, mid]
right_max = find_max(nums, mid + 1, right) # find max in range[mid + 1, right]
return left_max if left_max >= right_max else right_max
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)

View File

@ -1,86 +1,33 @@
from __future__ import annotations
def find_min_iterative(nums: list[int | float]) -> int | float:
def find_min(nums: list[int | float]) -> int | float:
"""
Find Minimum Number in a List
:param nums: contains elements
:return: min number in list
>>> for nums in ([3, 2, 1], [-3, -2, -1], [3, -3, 0], [3.0, 3.1, 2.9]):
... find_min_iterative(nums) == min(nums)
... find_min(nums) == min(nums)
True
True
True
True
>>> find_min_iterative([0, 1, 2, 3, 4, 5, -3, 24, -56])
>>> find_min([0, 1, 2, 3, 4, 5, -3, 24, -56])
-56
>>> find_min_iterative([])
>>> find_min([])
Traceback (most recent call last):
...
ValueError: find_min_iterative() arg is an empty sequence
ValueError: find_min() arg is an empty sequence
"""
if len(nums) == 0:
raise ValueError("find_min_iterative() arg is an empty sequence")
raise ValueError("find_min() arg is an empty sequence")
min_num = nums[0]
for num in nums:
min_num = min(min_num, num)
return min_num
# Divide and Conquer algorithm
def find_min_recursive(nums: list[int | float], left: int, right: int) -> int | float:
"""
find min value in list
:param nums: contains elements
:param left: index of first element
:param right: index of last element
:return: min in nums
>>> for nums in ([3, 2, 1], [-3, -2, -1], [3, -3, 0], [3.0, 3.1, 2.9]):
... find_min_recursive(nums, 0, len(nums) - 1) == min(nums)
True
True
True
True
>>> nums = [1, 3, 5, 7, 9, 2, 4, 6, 8, 10]
>>> find_min_recursive(nums, 0, len(nums) - 1) == min(nums)
True
>>> find_min_recursive([], 0, 0)
Traceback (most recent call last):
...
ValueError: find_min_recursive() arg is an empty sequence
>>> find_min_recursive(nums, 0, len(nums)) == min(nums)
Traceback (most recent call last):
...
IndexError: list index out of range
>>> find_min_recursive(nums, -len(nums), -1) == min(nums)
True
>>> find_min_recursive(nums, -len(nums) - 1, -1) == min(nums)
Traceback (most recent call last):
...
IndexError: list index out of range
"""
if len(nums) == 0:
raise ValueError("find_min_recursive() arg is an empty sequence")
if (
left >= len(nums)
or left < -len(nums)
or right >= len(nums)
or right < -len(nums)
):
raise IndexError("list index out of range")
if left == right:
return nums[left]
mid = (left + right) >> 1 # the middle
left_min = find_min_recursive(nums, left, mid) # find min in range[left, mid]
right_min = find_min_recursive(
nums, mid + 1, right
) # find min in range[mid + 1, right]
return left_min if left_min <= right_min else right_min
if __name__ == "__main__":
import doctest

View File

@ -0,0 +1,58 @@
from __future__ import annotations
# Divide and Conquer algorithm
def find_min(nums: list[int | float], left: int, right: int) -> int | float:
"""
find min value in list
:param nums: contains elements
:param left: index of first element
:param right: index of last element
:return: min in nums
>>> for nums in ([3, 2, 1], [-3, -2, -1], [3, -3, 0], [3.0, 3.1, 2.9]):
... find_min(nums, 0, len(nums) - 1) == min(nums)
True
True
True
True
>>> nums = [1, 3, 5, 7, 9, 2, 4, 6, 8, 10]
>>> find_min(nums, 0, len(nums) - 1) == min(nums)
True
>>> find_min([], 0, 0)
Traceback (most recent call last):
...
ValueError: find_min() arg is an empty sequence
>>> find_min(nums, 0, len(nums)) == min(nums)
Traceback (most recent call last):
...
IndexError: list index out of range
>>> find_min(nums, -len(nums), -1) == min(nums)
True
>>> find_min(nums, -len(nums) - 1, -1) == min(nums)
Traceback (most recent call last):
...
IndexError: list index out of range
"""
if len(nums) == 0:
raise ValueError("find_min() arg is an empty sequence")
if (
left >= len(nums)
or left < -len(nums)
or right >= len(nums)
or right < -len(nums)
):
raise IndexError("list index out of range")
if left == right:
return nums[left]
mid = (left + right) >> 1 # the middle
left_min = find_min(nums, left, mid) # find min in range[left, mid]
right_min = find_min(nums, mid + 1, right) # find min in range[mid + 1, right]
return left_min if left_min <= right_min else right_min
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)

View File

@ -13,7 +13,7 @@ This script is inspired by a corresponding research paper.
import numpy as np
def sigmoid(vector: np.ndarray) -> np.ndarray:
def sigmoid(vector: np.array) -> np.array:
"""
Mathematical function sigmoid takes a vector x of K real numbers as input and
returns 1/ (1 + e^-x).
@ -25,15 +25,17 @@ def sigmoid(vector: np.ndarray) -> np.ndarray:
return 1 / (1 + np.exp(-vector))
def gaussian_error_linear_unit(vector: np.ndarray) -> np.ndarray:
def gaussian_error_linear_unit(vector: np.array) -> np.array:
"""
Implements the Gaussian Error Linear Unit (GELU) function
Parameters:
vector (np.ndarray): A numpy array of shape (1, n) consisting of real values
vector (np.array): A numpy array of shape (1,n)
consisting of real values
Returns:
gelu_vec (np.ndarray): The input numpy array, after applying gelu
gelu_vec (np.array): The input numpy array, after applying
gelu.
Examples:
>>> gaussian_error_linear_unit(np.array([-1.0, 1.0, 2.0]))

View File

@ -14,11 +14,7 @@ Jaccard similarity is widely used with MinHashing.
"""
def jaccard_similarity(
set_a: set[str] | list[str] | tuple[str],
set_b: set[str] | list[str] | tuple[str],
alternative_union=False,
):
def jaccard_similarity(set_a, set_b, alternative_union=False):
"""
Finds the jaccard similarity between two sets.
Essentially, its intersection over union.
@ -41,52 +37,41 @@ def jaccard_similarity(
>>> set_b = {'c', 'd', 'e', 'f', 'h', 'i'}
>>> jaccard_similarity(set_a, set_b)
0.375
>>> jaccard_similarity(set_a, set_a)
1.0
>>> jaccard_similarity(set_a, set_a, True)
0.5
>>> set_a = ['a', 'b', 'c', 'd', 'e']
>>> set_b = ('c', 'd', 'e', 'f', 'h', 'i')
>>> jaccard_similarity(set_a, set_b)
0.375
>>> set_a = ('c', 'd', 'e', 'f', 'h', 'i')
>>> set_b = ['a', 'b', 'c', 'd', 'e']
>>> jaccard_similarity(set_a, set_b)
0.375
>>> set_a = ('c', 'd', 'e', 'f', 'h', 'i')
>>> set_b = ['a', 'b', 'c', 'd']
>>> jaccard_similarity(set_a, set_b, True)
0.2
>>> set_a = {'a', 'b'}
>>> set_b = ['c', 'd']
>>> jaccard_similarity(set_a, set_b)
Traceback (most recent call last):
...
ValueError: Set a and b must either both be sets or be either a list or a tuple.
"""
if isinstance(set_a, set) and isinstance(set_b, set):
intersection_length = len(set_a.intersection(set_b))
intersection = len(set_a.intersection(set_b))
if alternative_union:
union_length = len(set_a) + len(set_b)
union = len(set_a) + len(set_b)
else:
union_length = len(set_a.union(set_b))
union = len(set_a.union(set_b))
return intersection_length / union_length
return intersection / union
elif isinstance(set_a, (list, tuple)) and isinstance(set_b, (list, tuple)):
if isinstance(set_a, (list, tuple)) and isinstance(set_b, (list, tuple)):
intersection = [element for element in set_a if element in set_b]
if alternative_union:
return len(intersection) / (len(set_a) + len(set_b))
union = len(set_a) + len(set_b)
return len(intersection) / union
else:
# Cast set_a to list because tuples cannot be mutated
union = list(set_a) + [element for element in set_b if element not in set_a]
union = set_a + [element for element in set_b if element not in set_a]
return len(intersection) / len(union)
raise ValueError(
"Set a and b must either both be sets or be either a list or a tuple."
)
return len(intersection) / len(union)
return None
if __name__ == "__main__":

View File

@ -1,20 +1,16 @@
"""
Author: P Shreyas Shetty
Implementation of Newton-Raphson method for solving equations of kind
f(x) = 0. It is an iterative method where solution is found by the expression
x[n+1] = x[n] + f(x[n])/f'(x[n])
If no solution exists, then either the solution will not be found when iteration
limit is reached or the gradient f'(x[n]) approaches zero. In both cases, exception
is raised. If iteration limit is reached, try increasing maxiter.
"""
Author: P Shreyas Shetty
Implementation of Newton-Raphson method for solving equations of kind
f(x) = 0. It is an iterative method where solution is found by the expression
x[n+1] = x[n] + f(x[n])/f'(x[n])
If no solution exists, then either the solution will not be found when iteration
limit is reached or the gradient f'(x[n]) approaches zero. In both cases, exception
is raised. If iteration limit is reached, try increasing maxiter.
"""
import math as m
from collections.abc import Callable
DerivativeFunc = Callable[[float], float]
def calc_derivative(f: DerivativeFunc, a: float, h: float = 0.001) -> float:
def calc_derivative(f, a, h=0.001):
"""
Calculates derivative at point a for function f using finite difference
method
@ -22,14 +18,7 @@ def calc_derivative(f: DerivativeFunc, a: float, h: float = 0.001) -> float:
return (f(a + h) - f(a - h)) / (2 * h)
def newton_raphson(
f: DerivativeFunc,
x0: float = 0,
maxiter: int = 100,
step: float = 0.0001,
maxerror: float = 1e-6,
logsteps: bool = False,
) -> tuple[float, float, list[float]]:
def newton_raphson(f, x0=0, maxiter=100, step=0.0001, maxerror=1e-6, logsteps=False):
a = x0 # set the initial guess
steps = [a]
error = abs(f(a))
@ -47,7 +36,7 @@ def newton_raphson(
if logsteps:
# If logstep is true, then log intermediate steps
return a, error, steps
return a, error, []
return a, error
if __name__ == "__main__":

View File

@ -1,7 +1,7 @@
import numpy as np
def qr_householder(a: np.ndarray):
def qr_householder(a):
"""Return a QR-decomposition of the matrix A using Householder reflection.
The QR-decomposition decomposes the matrix A of shape (m, n) into an

View File

@ -11,7 +11,7 @@ https://en.wikipedia.org/wiki/Sigmoid_function
import numpy as np
def sigmoid(vector: np.ndarray) -> np.ndarray:
def sigmoid(vector: np.array) -> np.array:
"""
Implements the sigmoid function

View File

@ -12,12 +12,12 @@ https://en.wikipedia.org/wiki/Activation_function
import numpy as np
def tangent_hyperbolic(vector: np.ndarray) -> np.ndarray:
def tangent_hyperbolic(vector: np.array) -> np.array:
"""
Implements the tanh function
Parameters:
vector: np.ndarray
vector: np.array
Returns:
tanh (np.array): The input numpy array after applying tanh.

View File

@ -1,39 +0,0 @@
"""
Leaky Rectified Linear Unit (Leaky ReLU)
Use Case: Leaky ReLU addresses the problem of the vanishing gradient.
For more detailed information, you can refer to the following link:
https://en.wikipedia.org/wiki/Rectifier_(neural_networks)#Leaky_ReLU
"""
import numpy as np
def leaky_rectified_linear_unit(vector: np.ndarray, alpha: float) -> np.ndarray:
"""
Implements the LeakyReLU activation function.
Parameters:
vector (np.ndarray): The input array for LeakyReLU activation.
alpha (float): The slope for negative values.
Returns:
np.ndarray: The input array after applying the LeakyReLU activation.
Formula: f(x) = x if x > 0 else f(x) = alpha * x
Examples:
>>> leaky_rectified_linear_unit(vector=np.array([2.3,0.6,-2,-3.8]), alpha=0.3)
array([ 2.3 , 0.6 , -0.6 , -1.14])
>>> leaky_rectified_linear_unit(np.array([-9.2, -0.3, 0.45, -4.56]), alpha=0.067)
array([-0.6164 , -0.0201 , 0.45 , -0.30552])
"""
return np.where(vector > 0, vector, alpha * vector)
if __name__ == "__main__":
import doctest
doctest.testmod()

View File

@ -53,40 +53,6 @@ def volume_of_gas_system(moles: float, kelvin: float, pressure: float) -> float:
return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure
def temperature_of_gas_system(moles: float, volume: float, pressure: float) -> float:
"""
>>> temperature_of_gas_system(2, 100, 5)
30.068090996146232
>>> temperature_of_gas_system(11, 5009, 1000)
54767.66101807144
>>> temperature_of_gas_system(3, -0.46, 23.5)
Traceback (most recent call last):
...
ValueError: Invalid inputs. Enter positive value.
"""
if moles < 0 or volume < 0 or pressure < 0:
raise ValueError("Invalid inputs. Enter positive value.")
return pressure * volume / (moles * UNIVERSAL_GAS_CONSTANT)
def moles_of_gas_system(kelvin: float, volume: float, pressure: float) -> float:
"""
>>> moles_of_gas_system(100, 5, 10)
0.06013618199229246
>>> moles_of_gas_system(110, 5009, 1000)
5476.766101807144
>>> moles_of_gas_system(3, -0.46, 23.5)
Traceback (most recent call last):
...
ValueError: Invalid inputs. Enter positive value.
"""
if kelvin < 0 or volume < 0 or pressure < 0:
raise ValueError("Invalid inputs. Enter positive value.")
return pressure * volume / (kelvin * UNIVERSAL_GAS_CONSTANT)
if __name__ == "__main__":
from doctest import testmod

View File

@ -226,7 +226,7 @@ def plot(
No doctest provided since this function does not have a return value.
"""
fig = plt.figure()
fig.canvas.manager.set_window_title(title)
fig.canvas.set_window_title(title)
ax = plt.axes(
xlim=(x_start, x_end), ylim=(y_start, y_end)
) # Set section to be plotted

View File

@ -1,117 +0,0 @@
"""
Implements an is valid email address algorithm
@ https://en.wikipedia.org/wiki/Email_address
"""
import string
email_tests: tuple[tuple[str, bool], ...] = (
("simple@example.com", True),
("very.common@example.com", True),
("disposable.style.email.with+symbol@example.com", True),
("other-email-with-hyphen@and.subdomains.example.com", True),
("fully-qualified-domain@example.com", True),
("user.name+tag+sorting@example.com", True),
("x@example.com", True),
("example-indeed@strange-example.com", True),
("test/test@test.com", True),
(
"123456789012345678901234567890123456789012345678901234567890123@example.com",
True,
),
("admin@mailserver1", True),
("example@s.example", True),
("Abc.example.com", False),
("A@b@c@example.com", False),
("abc@example..com", False),
("a(c)d,e:f;g<h>i[j\\k]l@example.com", False),
(
"12345678901234567890123456789012345678901234567890123456789012345@example.com",
False,
),
("i.like.underscores@but_its_not_allowed_in_this_part", False),
("", False),
)
# The maximum octets (one character as a standard unicode character is one byte)
# that the local part and the domain part can have
MAX_LOCAL_PART_OCTETS = 64
MAX_DOMAIN_OCTETS = 255
def is_valid_email_address(email: str) -> bool:
"""
Returns True if the passed email address is valid.
The local part of the email precedes the singular @ symbol and
is associated with a display-name. For example, "john.smith"
The domain is stricter than the local part and follows the @ symbol.
Global email checks:
1. There can only be one @ symbol in the email address. Technically if the
@ symbol is quoted in the local-part, then it is valid, however this
implementation ignores "" for now.
(See https://en.wikipedia.org/wiki/Email_address#:~:text=If%20quoted,)
2. The local-part and the domain are limited to a certain number of octets. With
unicode storing a single character in one byte, each octet is equivalent to
a character. Hence, we can just check the length of the string.
Checks for the local-part:
3. The local-part may contain: upper and lowercase latin letters, digits 0 to 9,
and printable characters (!#$%&'*+-/=?^_`{|}~)
4. The local-part may also contain a "." in any place that is not the first or
last character, and may not have more than one "." consecutively.
Checks for the domain:
5. The domain may contain: upper and lowercase latin letters and digits 0 to 9
6. Hyphen "-", provided that it is not the first or last character
7. The domain may also contain a "." in any place that is not the first or
last character, and may not have more than one "." consecutively.
>>> for email, valid in email_tests:
... assert is_valid_email_address(email) == valid
"""
# (1.) Make sure that there is only one @ symbol in the email address
if email.count("@") != 1:
return False
local_part, domain = email.split("@")
# (2.) Check octet length of the local part and domain
if len(local_part) > MAX_LOCAL_PART_OCTETS or len(domain) > MAX_DOMAIN_OCTETS:
return False
# (3.) Validate the characters in the local-part
if any(
char not in string.ascii_letters + string.digits + ".(!#$%&'*+-/=?^_`{|}~)"
for char in local_part
):
return False
# (4.) Validate the placement of "." characters in the local-part
if local_part.startswith(".") or local_part.endswith(".") or ".." in local_part:
return False
# (5.) Validate the characters in the domain
if any(char not in string.ascii_letters + string.digits + ".-" for char in domain):
return False
# (6.) Validate the placement of "-" characters
if domain.startswith("-") or domain.endswith("."):
return False
# (7.) Validate the placement of "." characters
if domain.startswith(".") or domain.endswith(".") or ".." in domain:
return False
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
for email, valid in email_tests:
is_valid = is_valid_email_address(email)
assert is_valid == valid, f"{email} is {is_valid}"
print(f"Email address {email} is {'not ' if not is_valid else ''}valid")