Compare commits

...

3 Commits

Author SHA1 Message Date
pre-commit-ci[bot]
071ce716e4 [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
2024-11-18 04:10:32 +00:00
mcawezome
a92936bd01 Added tests and docstrings to fibonacci_heap.py 2024-11-18 12:10:01 +08:00
mcawezome
ea5a187b0a Rewrote entire file to pass checks 2024-11-18 11:03:04 +08:00

View File

@ -1,444 +1,361 @@
from __future__ import annotations """
Fibonacci Heap
A more efficient priority queue implementation that provides amortized time bounds
that are better than those of the binary and binomial heaps.
reference: https://en.wikipedia.org/wiki/Fibonacci_heap
Operations supported:
- Insert: O(1) amortized
- Find minimum: O(1)
- Delete minimum: O(log n) amortized
- Decrease key: O(1) amortized
- Merge: O(1)
"""
class Node: class Node:
"""A node in the Fibonacci heap. """
A node in a Fibonacci heap.
Each node maintains references to its key, degree (number of children), Args:
marked status, parent, child, and circular linked list references (left/right). val: The value stored in the node.
Attributes: Attributes:
key: The key value stored in the node val: The value stored in the node.
degree: Number of children of the node parent: Reference to parent node.
marked: Boolean indicating if the node is marked child: Reference to one child node.
parent: Reference to parent node left: Reference to left sibling.
child: Reference to one child node right: Reference to right sibling.
left: Reference to left sibling in circular list degree: Number of children.
right: Reference to right sibling in circular list mark: Boolean indicating if node has lost a child.
Examples:
>>> node = Node(5)
>>> node.key
5
>>> node.degree
0
>>> node.marked
False
>>> node.left == node
True
>>> node.right == node
True
""" """
def __init__(self, key: float | None) -> None: def __init__(self, val):
self.key = key or None self.val = val
self.degree = 0 self.parent = None
self.marked = False self.child = None
self.parent = Node(None)
self.child = Node(None)
self.left = self self.left = self
self.right = self self.right = self
self.degree = 0
self.mark = False
def add_sibling(self, node):
"""
Adds a node as a sibling to the current node.
Args:
node: The node to add as a sibling.
"""
node.left = self
node.right = self.right
self.right.left = node
self.right = node
def add_child(self, node):
"""
Adds a node as a child of the current node.
Args:
node: The node to add as a child.
"""
node.parent = self
if not self.child:
self.child = node
else:
self.child.add_sibling(node)
self.degree += 1
def remove(self):
"""Removes this node from its sibling list."""
self.left.right = self.right
self.right.left = self.left
class FibonacciHeap: class FibonacciHeap:
"""Implementation of a Fibonacci heap using circular linked lists. """
A Fibonacci heap implementation providing
amortized efficient priority queue operations.
A Fibonacci heap is a collection of trees satisfying the min-heap property. This implementation provides the following time complexities:
This implementation uses circular linked lists for both the root list and - Insert: O(1) amortized
child lists of nodes. - Find minimum: O(1)
- Delete minimum: O(log n) amortized
- Decrease key: O(1) amortized
- Merge: O(1)
Attributes: Example:
min_node: Reference to the node with minimum key >>> heap = FibonacciHeap()
total_nodes: Total number of nodes in the heap >>> node1 = heap.insert(3)
>>> node2 = heap.insert(2)
Reference: Introduction to Algorithms (CLRS) Chapter 19 >>> node3 = heap.insert(15)
https://en.wikipedia.org/wiki/Fibonacci_heap >>> heap.peek()
2
Examples: >>> heap.delete_min()
>>> heap = FibonacciHeap() 2
>>> heap.is_empty() >>> heap.peek()
True 3
>>> node = heap.insert(3) >>> other_heap = FibonacciHeap()
>>> node.key >>> node4 = other_heap.insert(1)
3 >>> heap.merge_heaps(other_heap)
>>> node2 = heap.insert(2) >>> heap.peek()
>>> node2.key 1
2
>>> heap.find_min()
2
>>> heap.extract_min()
2
>>> heap.find_min()
3
""" """
def __init__(self) -> None: def __init__(self):
self.min_node = Node(None) """Initializes an empty Fibonacci heap."""
self.total_nodes = 0 self.min_node = None
self.size = 0
def insert(self, key: float | None) -> Node: def is_empty(self):
"""Insert a new key into the heap. """
Checks if the heap is empty.
Args:
key: The key value to insert
Returns: Returns:
Node: The newly created node bool: True if heap is empty, False otherwise.
Examples:
>>> heap = FibonacciHeap()
>>> node = heap.insert(5)
>>> node.key
5
>>> heap.find_min()
5
>>> node2 = heap.insert(3)
>>> node2.key
3
>>> heap.find_min()
3
""" """
new_node = Node(key) return self.min_node is None
if self.min_node is None:
self.min_node = new_node def insert(self, val):
"""
Inserts a new value into the heap.
Args:
val: Value to insert.
Returns:
Node: The newly created node.
"""
node = Node(val)
if not self.min_node:
self.min_node = node
else: else:
self._insert_into_circular_list(self.min_node, new_node) self.min_node.add_sibling(node)
if new_node.key < self.min_node.key: if node.val < self.min_node.val:
self.min_node = new_node self.min_node = node
self.total_nodes += 1 self.size += 1
return new_node return node
@staticmethod def peek(self):
def _insert_into_circular_list(base_node: Node, node_to_insert: Node) -> Node: """
"""Insert node into circular linked list. Returns the minimum value without removing it.
Returns:
The minimum value in the heap.
Raises:
IndexError: If the heap is empty.
"""
if not self.min_node:
raise IndexError("Heap is empty")
return self.min_node.val
def merge_heaps(self, other):
"""
Merges another Fibonacci heap into this one.
Args: Args:
base_node: The reference node in the circular list other: Another FibonacciHeap instance to merge with this one.
node_to_insert: The node to insert into the list """
if not other.min_node:
return
if not self.min_node:
self.min_node = other.min_node
else:
# Merge root lists
self.min_node.right.left = other.min_node.left
other.min_node.left.right = self.min_node.right
self.min_node.right = other.min_node
other.min_node.left = self.min_node
if other.min_node.val < self.min_node.val:
self.min_node = other.min_node
self.size += other.size
def __link_trees(self, node1, node2):
"""
Links two trees of same degree.
Args:
node1: First tree's root node.
node2: Second tree's root node.
"""
node1.remove()
if node2.child:
node2.child.add_sibling(node1)
else:
node2.child = node1
node1.parent = node2
node2.degree += 1
node1.mark = False
def delete_min(self):
"""
Removes and returns the minimum value from the heap.
Returns: Returns:
Node: The base node The minimum value that was removed.
Examples: Raises:
>>> heap = FibonacciHeap() IndexError: If the heap is empty.
>>> node1 = Node(1)
>>> node2 = Node(2)
>>> result = heap._insert_into_circular_list(node1, node2)
>>> result == node1
True
>>> node1.right == node2
True
>>> node2.left == node1
True
""" """
if base_node.key is None: if not self.min_node:
return node_to_insert raise IndexError("Heap is empty")
node_to_insert.right = base_node.right min_val = self.min_node.val
node_to_insert.left = base_node
base_node.right.left = node_to_insert
base_node.right = node_to_insert
return base_node
def extract_min(self) -> float | None: # Add all children to root list
"""Remove and return the minimum key from the heap. if self.min_node.child:
curr = self.min_node.child
This operation removes the node with the minimum key from the heap,
adds all its children to the root list, and consolidates the heap
to maintain the Fibonacci heap properties. This is one of the more
complex operations with amortized time complexity of O(log n).
Returns:
Node: The minimum key value that was removed,
or None if the heap is empty
Example:
>>> heap = FibonacciHeap()
>>> node1 = heap.insert(3)
>>> node2 = heap.insert(1)
>>> node3 = heap.insert(2)
>>> heap.extract_min() # Removes and returns 1
1
>>> heap.extract_min() # Removes and returns 2
2
>>> heap.extract_min() # Removes and returns 3
3
>>> heap.extract_min() # Heap is now empty
Note:
This operation may trigger heap consolidation to maintain
the Fibonacci heap properties after removal of the minimum node.
"""
if self.min_node is None:
return Node(None).key
min_node = self.min_node
if min_node.child:
current_child = min_node.child
last_child = min_node.child.left
while True: while True:
next_child = current_child.right next_node = curr.right
self._insert_into_circular_list(self.min_node, current_child) curr.parent = None
current_child.parent.key = None curr.mark = False
if current_child == last_child: self.min_node.add_sibling(curr)
if curr.right == self.min_node.child:
break break
current_child = next_child curr = next_node
min_node.left.right = min_node.right # Remove minimum node
min_node.right.left = min_node.left if self.min_node.right == self.min_node:
self.min_node = None
if min_node == min_node.right:
self.min_node.key = None
else: else:
self.min_node = min_node.right self.min_node.remove()
self._consolidate() self.min_node = self.min_node.right
self.__consolidate()
self.total_nodes -= 1 self.size -= 1
return min_node.key return min_val
def _consolidate(self) -> None: def __consolidate(self):
"""Consolidate the heap after removing the minimum node.
This internal method maintains the Fibonacci heap properties by combining
trees of the same degree until no two roots have the same degree. This
process is key to maintaining the efficiency of the data structure.
The consolidation process works by:
1. Creating a temporary array indexed by tree degree
2. Processing each root node and combining trees of the same degree
3. Reconstructing the root list and finding the new minimum
Time complexity: O(log n) amortized
Note:
This is an internal method called by extract_min and should not be
called directly from outside the class.
""" """
max_degree = int(self.total_nodes**0.5) + 1 Consolidates the trees in the heap after a delete_min operation.
degree_table = [Node(None)] * max_degree
This is an internal method that maintains the heap's structure.
"""
max_degree = int(self.size**0.5) + 1
degree_table = [None] * max_degree
# Collect all roots
roots = [] roots = []
if self.min_node: curr = self.min_node
current_root = self.min_node while True:
while True: roots.append(curr)
roots.append(current_root) curr = curr.right
if current_root.right == self.min_node: if curr == self.min_node:
break break
current_root = current_root.right
for current_root in roots: # Consolidate trees
root_node = current_root for root in roots:
current_degree = root_node.degree degree = root.degree
while degree_table[degree]:
other = degree_table[degree]
if root.val > other.val:
root, other = other, root
self.__link_trees(other, root)
degree_table[degree] = None
degree += 1
degree_table[degree] = root
while degree_table[current_degree] is not None: # Find new minimum
other_root = degree_table[current_degree] self.min_node = None
if root_node.key > other_root.key:
root_node, other_root = other_root, root_node
other_root.left.right = other_root.right
other_root.right.left = other_root.left
if root_node.child.key is None:
root_node.child = other_root
other_root.right = other_root
other_root.left = other_root
else:
self._insert_into_circular_list(root_node.child, other_root)
other_root.parent = root_node
root_node.degree += 1
other_root.marked = False
degree_table[current_degree] = Node(None)
current_degree += 1
degree_table[current_degree] = root_node
self.min_node.key = None
for degree in range(max_degree): for degree in range(max_degree):
if degree_table[degree] is not None and ( if degree_table[degree]:
self.min_node is None or (degree_table[degree] < self.min_node.key) if not self.min_node:
): self.min_node = degree_table[degree]
self.min_node = degree_table[degree] self.min_node.left = self.min_node
self.min_node.right = self.min_node
else:
self.min_node.add_sibling(degree_table[degree])
if degree_table[degree].val < self.min_node.val:
self.min_node = degree_table[degree]
def decrease_key(self, node: Node, new_key: float | None) -> None: def decrease_key(self, node, new_val):
"""Decrease the key value of a given node. """
Decreases the value of a node.
This operation updates the key of a node to a new, smaller value and
maintains the min-heap property by potentially cutting the node from
its parent and performing cascading cuts up the tree.
Args: Args:
node: The node whose key should be decreased node: The node whose value should be decreased.
new_key: The new key value, must be smaller than the current key new_val: The new value for the node.
Example: Raises:
>>> heap = FibonacciHeap() ValueError: If new value is greater than current value.
>>> node1 = heap.insert(5)
>>> heap.decrease_key(node, 3)
>>> node.key
3
>>> heap.find_min()
3
>>> heap.decrease_key(node, 1)
>>> node.key
1
>>> heap.find_min()
1
""" """
if new_key > node.key: if new_val > node.val:
raise ValueError("New key is greater than current key") raise ValueError("New value is greater than current value")
node.key = new_key node.val = new_val
parent_node = node.parent parent = node.parent
if parent_node.key is not None and node.key < parent_node.key: if parent and node.val < parent.val:
self._cut(node, parent_node) self.__cut(node, parent)
self._cascading_cut(parent_node) self.__cascading_cut(parent)
if node.key < self.min_node.key: if node.val < self.min_node.val:
self.min_node = node self.min_node = node
def _cut(self, child_node: Node, parent_node: Node) -> None: def __cut(self, node, parent):
"""Cut a node from its parent and add it to the root list. """
Cuts a node from its parent.
This is a helper method used in decrease_key operations. When a node's key
becomes smaller than its parent's key, it needs to be cut from its parent
and added to the root list to maintain the min-heap property.
Args: Args:
child_node: The node to be cut from its parent node: Node to be cut.
parent_node: The parent node from which to cut parent: Parent of the node to be cut.
""" """
Note: Performs cascading cut operation.
This is an internal method that maintains heap properties during
decrease_key operations. It should not be called directly from
outside the class.
"""
if child_node.right == child_node:
parent_node.child = Node(None)
else:
parent_node.child = child_node.right
child_node.right.left = child_node.left
child_node.left.right = child_node.right
parent_node.degree -= 1
self._insert_into_circular_list(self.min_node, child_node)
child_node.parent = Node(None)
child_node.marked = False
def _cascading_cut(self, current_node: Node) -> None:
"""Perform cascading cut operation.
Args: Args:
current_node: The node to start cascading cut from node: Starting node for cascading cut.
""" """
if (parent_node := current_node.parent) is not None:
if not current_node.marked: parent.degree -= 1
current_node.marked = True if parent.child == node:
parent.child = node.right if node.right != node else None
node.remove()
node.left = node
node.right = node
node.parent = None
node.mark = False
self.min_node.add_sibling(node)
def __cascading_cut(self, node):
"""
Performs cascading cut operation.
Args:
node: Starting node for cascading cut.
"""
if parent := node.parent:
if not node.mark:
node.mark = True
else: else:
self._cut(current_node, parent_node) self.__cut(node, parent)
self._cascading_cut(parent_node) self.__cascading_cut(parent)
def delete(self, node: Node) -> None: def __str__(self):
"""Delete a node from the heap.
This operation removes a given node from the heap by first decreasing
its key to negative infinity (making it the minimum) and then extracting
the minimum.
Args:
node: The node to be deleted from the heap
Example:
>>> heap = FibonacciHeap()
>>> node1 = heap.insert(3)
>>> node2 = heap.insert(2)
>>> heap.delete(node1)
>>> heap.find_min()
2
>>> heap.total_nodes
1
Note:
This operation has an amortized time complexity of O(log n)
as it combines decrease_key and extract_min operations.
""" """
self.decrease_key(node, float("-inf")) Returns a string representation of the heap.
self.extract_min()
def find_min(self) -> float | None:
"""Return the minimum key without removing it from the heap.
This operation provides quick access to the minimum key in the heap
without modifying the heap structure.
Returns: Returns:
float | None: The minimum key value, or None if the heap is empty str: A string showing the heap structure.
Example:
>>> heap = FibonacciHeap()
>>> heap.find_min() is None
True
>>> node1 = heap.insert(3)
>>> heap.find_min()
3
""" """
return self.min_node.key if self.min_node else Node(None).key if not self.min_node:
return "Empty heap"
def is_empty(self) -> bool: def print_tree(node, level=0):
"""Check if heap is empty. result = []
curr = node
while True:
result.append("-" * level + str(curr.val))
if curr.child:
result.extend(print_tree(curr.child, level + 1))
curr = curr.right
if curr == node:
break
return result
Returns: return "\n".join(print_tree(self.min_node))
bool: True if heap is empty, False otherwise
Examples:
>>> heap = FibonacciHeap()
>>> heap.is_empty()
True
>>> node = heap.insert(1)
>>> heap.is_empty()
False
"""
return self.min_node.key is None
def merge(self, other_heap: FibonacciHeap) -> None:
"""Merge another Fibonacci heap into this one.
This operation combines two Fibonacci heaps by concatenating their
root lists and updating the minimum pointer if necessary. The other
heap is effectively consumed in this process.
Args:
other_heap: Another FibonacciHeap instance to merge into this one
Example:
>>> heap1 = FibonacciHeap()
>>> node1 = heap1.insert(3)
>>> heap2 = FibonacciHeap()
>>> node2 = heap2.insert(2)
>>> heap1.merge(heap2)
>>> heap1.find_min()
2
>>> heap1.total_nodes
2
"""
if other_heap.min_node.key is None:
return
if self.min_node.key is None:
self.min_node = other_heap.min_node
else:
self.min_node.right.left = other_heap.min_node.left
other_heap.min_node.left.right = self.min_node.right
self.min_node.right = other_heap.min_node
other_heap.min_node.left = self.min_node
if other_heap.min_node.key < self.min_node.key:
self.min_node = other_heap.min_node
self.total_nodes += other_heap.total_nodes
if __name__ == "__main__": if __name__ == "__main__":