mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-30 16:31:08 +00:00
Compare commits
3 Commits
3782dab476
...
0dfd6dacd7
Author | SHA1 | Date | |
---|---|---|---|
|
0dfd6dacd7 | ||
|
f3f32ae3ca | ||
|
acb955cb87 |
|
@ -16,7 +16,7 @@ repos:
|
||||||
- id: auto-walrus
|
- id: auto-walrus
|
||||||
|
|
||||||
- repo: https://github.com/astral-sh/ruff-pre-commit
|
- repo: https://github.com/astral-sh/ruff-pre-commit
|
||||||
rev: v0.7.3
|
rev: v0.7.4
|
||||||
hooks:
|
hooks:
|
||||||
- id: ruff
|
- id: ruff
|
||||||
- id: ruff-format
|
- id: ruff-format
|
||||||
|
|
|
@ -41,6 +41,14 @@ def run_steep_gradient_descent(data_x, data_y, len_data, alpha, theta):
|
||||||
:param theta : Feature vector (weight's for our model)
|
:param theta : Feature vector (weight's for our model)
|
||||||
;param return : Updated Feature's, using
|
;param return : Updated Feature's, using
|
||||||
curr_features - alpha_ * gradient(w.r.t. feature)
|
curr_features - alpha_ * gradient(w.r.t. feature)
|
||||||
|
>>> import numpy as np
|
||||||
|
>>> data_x = np.array([[1, 2], [3, 4]])
|
||||||
|
>>> data_y = np.array([5, 6])
|
||||||
|
>>> len_data = len(data_x)
|
||||||
|
>>> alpha = 0.01
|
||||||
|
>>> theta = np.array([0.1, 0.2])
|
||||||
|
>>> run_steep_gradient_descent(data_x, data_y, len_data, alpha, theta)
|
||||||
|
array([0.196, 0.343])
|
||||||
"""
|
"""
|
||||||
n = len_data
|
n = len_data
|
||||||
|
|
||||||
|
@ -58,6 +66,12 @@ def sum_of_square_error(data_x, data_y, len_data, theta):
|
||||||
:param len_data : len of the dataset
|
:param len_data : len of the dataset
|
||||||
:param theta : contains the feature vector
|
:param theta : contains the feature vector
|
||||||
:return : sum of square error computed from given feature's
|
:return : sum of square error computed from given feature's
|
||||||
|
|
||||||
|
Example:
|
||||||
|
>>> vc_x = np.array([[1.1], [2.1], [3.1]])
|
||||||
|
>>> vc_y = np.array([1.2, 2.2, 3.2])
|
||||||
|
>>> round(sum_of_square_error(vc_x, vc_y, 3, np.array([1])),3)
|
||||||
|
np.float64(0.005)
|
||||||
"""
|
"""
|
||||||
prod = np.dot(theta, data_x.transpose())
|
prod = np.dot(theta, data_x.transpose())
|
||||||
prod -= data_y.transpose()
|
prod -= data_y.transpose()
|
||||||
|
@ -93,6 +107,11 @@ def mean_absolute_error(predicted_y, original_y):
|
||||||
:param predicted_y : contains the output of prediction (result vector)
|
:param predicted_y : contains the output of prediction (result vector)
|
||||||
:param original_y : contains values of expected outcome
|
:param original_y : contains values of expected outcome
|
||||||
:return : mean absolute error computed from given feature's
|
:return : mean absolute error computed from given feature's
|
||||||
|
|
||||||
|
>>> predicted_y = [3, -0.5, 2, 7]
|
||||||
|
>>> original_y = [2.5, 0.0, 2, 8]
|
||||||
|
>>> mean_absolute_error(predicted_y, original_y)
|
||||||
|
0.5
|
||||||
"""
|
"""
|
||||||
total = sum(abs(y - predicted_y[i]) for i, y in enumerate(original_y))
|
total = sum(abs(y - predicted_y[i]) for i, y in enumerate(original_y))
|
||||||
return total / len(original_y)
|
return total / len(original_y)
|
||||||
|
@ -114,4 +133,7 @@ def main():
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
import doctest
|
||||||
|
|
||||||
|
doctest.testmod()
|
||||||
main()
|
main()
|
||||||
|
|
Loading…
Reference in New Issue
Block a user