Compare commits

..

No commits in common. "38aca4dacaf99aab21c09bd88452dc0bde05d47d" and "2791958f9af478854528b4cfce5fb8ffd945134c" have entirely different histories.

201 changed files with 1638 additions and 6663 deletions

View File

@ -1,8 +0,0 @@
# https://github.com/microsoft/vscode-dev-containers/blob/main/containers/python-3/README.md
ARG VARIANT=3.11-bookworm
FROM mcr.microsoft.com/vscode/devcontainers/python:${VARIANT}
COPY requirements.txt /tmp/pip-tmp/
RUN python3 -m pip install --upgrade pip \
&& python3 -m pip install --no-cache-dir install -r /tmp/pip-tmp/requirements.txt \
&& pipx install pre-commit ruff \
&& pre-commit install

View File

@ -1,42 +0,0 @@
{
"name": "Python 3",
"build": {
"dockerfile": "Dockerfile",
"context": "..",
"args": {
// Update 'VARIANT' to pick a Python version: 3, 3.10, 3.9, 3.8, 3.7, 3.6
// Append -bullseye or -buster to pin to an OS version.
// Use -bullseye variants on local on arm64/Apple Silicon.
"VARIANT": "3.11-bookworm",
}
},
// Configure tool-specific properties.
"customizations": {
// Configure properties specific to VS Code.
"vscode": {
// Set *default* container specific settings.json values on container create.
"settings": {
"python.defaultInterpreterPath": "/usr/local/bin/python",
"python.linting.enabled": true,
"python.formatting.blackPath": "/usr/local/py-utils/bin/black",
"python.linting.mypyPath": "/usr/local/py-utils/bin/mypy"
},
// Add the IDs of extensions you want installed when the container is created.
"extensions": [
"ms-python.python",
"ms-python.vscode-pylance"
]
}
},
// Use 'forwardPorts' to make a list of ports inside the container available locally.
// "forwardPorts": [],
// Use 'postCreateCommand' to run commands after the container is created.
// "postCreateCommand": "pip3 install --user -r requirements.txt",
// Comment out to connect as root instead. More info: https://aka.ms/vscode-remote/containers/non-root.
"remoteUser": "vscode"
}

View File

@ -17,4 +17,4 @@
* [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms include at least one URL that points to Wikipedia or another similar explanation.
* [ ] If this pull request resolves one or more open issues then the description above includes the issue number(s) with a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue): "Fixes #ISSUE-NUMBER".
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.

View File

@ -22,9 +22,11 @@ jobs:
python -m pip install --upgrade pip setuptools six wheel
python -m pip install pytest-cov -r requirements.txt
- name: Run tests
# TODO: #8818 Re-enable quantum tests
# See: #6591 for re-enabling tests on Python v3.11
run: pytest
--ignore=quantum/q_fourier_transform.py
--ignore=computer_vision/cnn_classification.py
--ignore=machine_learning/lstm/lstm_prediction.py
--ignore=quantum/
--ignore=project_euler/
--ignore=scripts/validate_solutions.py
--cov-report=term-missing:skip-covered

View File

@ -15,25 +15,25 @@ repos:
hooks:
- id: auto-walrus
- repo: https://github.com/astral-sh/ruff-pre-commit
rev: v0.0.282
- repo: https://github.com/charliermarsh/ruff-pre-commit
rev: v0.0.261
hooks:
- id: ruff
- repo: https://github.com/psf/black
rev: 23.7.0
rev: 23.3.0
hooks:
- id: black
- repo: https://github.com/codespell-project/codespell
rev: v2.2.5
rev: v2.2.4
hooks:
- id: codespell
additional_dependencies:
- tomli
- repo: https://github.com/tox-dev/pyproject-fmt
rev: "0.13.0"
rev: "0.9.2"
hooks:
- id: pyproject-fmt
@ -46,12 +46,12 @@ repos:
pass_filenames: false
- repo: https://github.com/abravalheri/validate-pyproject
rev: v0.13
rev: v0.12.2
hooks:
- id: validate-pyproject
- repo: https://github.com/pre-commit/mirrors-mypy
rev: v1.4.1
rev: v1.2.0
hooks:
- id: mypy
args:

View File

@ -1,5 +0,0 @@
{
"githubPullRequests.ignoredPullRequestBranches": [
"master"
]
}

View File

@ -25,14 +25,7 @@ We appreciate any contribution, from fixing a grammar mistake in a comment to im
Your contribution will be tested by our [automated testing on GitHub Actions](https://github.com/TheAlgorithms/Python/actions) to save time and mental energy. After you have submitted your pull request, you should see the GitHub Actions tests start to run at the bottom of your submission page. If those tests fail, then click on the ___details___ button try to read through the GitHub Actions output to understand the failure. If you do not understand, please leave a comment on your submission page and a community member will try to help.
If you are interested in resolving an [open issue](https://github.com/TheAlgorithms/Python/issues), simply make a pull request with your proposed fix. __We do not assign issues in this repo__ so please do not ask for permission to work on an issue.
Please help us keep our issue list small by adding `Fixes #{$ISSUE_NUMBER}` to the description of pull requests that resolve open issues.
For example, if your pull request fixes issue #10, then please add the following to its description:
```
Fixes #10
```
GitHub will use this tag to [auto-close the issue](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue) if and when the PR is merged.
Please help us keep our issue list small by adding fixes: #{$ISSUE_NO} to the commit message of pull requests that resolve open issues. GitHub will use this tag to auto-close the issue when the PR is merged.
#### What is an Algorithm?

View File

@ -29,7 +29,6 @@
* [Minmax](backtracking/minmax.py)
* [N Queens](backtracking/n_queens.py)
* [N Queens Math](backtracking/n_queens_math.py)
* [Power Sum](backtracking/power_sum.py)
* [Rat In Maze](backtracking/rat_in_maze.py)
* [Sudoku](backtracking/sudoku.py)
* [Sum Of Subsets](backtracking/sum_of_subsets.py)
@ -74,7 +73,6 @@
* [Game Of Life](cellular_automata/game_of_life.py)
* [Nagel Schrekenberg](cellular_automata/nagel_schrekenberg.py)
* [One Dimensional](cellular_automata/one_dimensional.py)
* [Wa Tor](cellular_automata/wa_tor.py)
## Ciphers
* [A1Z26](ciphers/a1z26.py)
@ -148,7 +146,6 @@
* [Decimal To Binary Recursion](conversions/decimal_to_binary_recursion.py)
* [Decimal To Hexadecimal](conversions/decimal_to_hexadecimal.py)
* [Decimal To Octal](conversions/decimal_to_octal.py)
* [Energy Conversions](conversions/energy_conversions.py)
* [Excel Title To Column](conversions/excel_title_to_column.py)
* [Hex To Bin](conversions/hex_to_bin.py)
* [Hexadecimal To Decimal](conversions/hexadecimal_to_decimal.py)
@ -169,7 +166,6 @@
* Arrays
* [Permutations](data_structures/arrays/permutations.py)
* [Prefix Sum](data_structures/arrays/prefix_sum.py)
* [Product Sum](data_structures/arrays/product_sum.py)
* Binary Tree
* [Avl Tree](data_structures/binary_tree/avl_tree.py)
* [Basic Binary Tree](data_structures/binary_tree/basic_binary_tree.py)
@ -237,8 +233,8 @@
* [Double Ended Queue](data_structures/queue/double_ended_queue.py)
* [Linked Queue](data_structures/queue/linked_queue.py)
* [Priority Queue Using List](data_structures/queue/priority_queue_using_list.py)
* [Queue By List](data_structures/queue/queue_by_list.py)
* [Queue By Two Stacks](data_structures/queue/queue_by_two_stacks.py)
* [Queue On List](data_structures/queue/queue_on_list.py)
* [Queue On Pseudo Stack](data_structures/queue/queue_on_pseudo_stack.py)
* Stacks
* [Balanced Parentheses](data_structures/stacks/balanced_parentheses.py)
@ -294,7 +290,7 @@
* [Inversions](divide_and_conquer/inversions.py)
* [Kth Order Statistic](divide_and_conquer/kth_order_statistic.py)
* [Max Difference Pair](divide_and_conquer/max_difference_pair.py)
* [Max Subarray](divide_and_conquer/max_subarray.py)
* [Max Subarray Sum](divide_and_conquer/max_subarray_sum.py)
* [Mergesort](divide_and_conquer/mergesort.py)
* [Peak](divide_and_conquer/peak.py)
* [Power](divide_and_conquer/power.py)
@ -325,27 +321,24 @@
* [Matrix Chain Order](dynamic_programming/matrix_chain_order.py)
* [Max Non Adjacent Sum](dynamic_programming/max_non_adjacent_sum.py)
* [Max Product Subarray](dynamic_programming/max_product_subarray.py)
* [Max Subarray Sum](dynamic_programming/max_subarray_sum.py)
* [Max Sub Array](dynamic_programming/max_sub_array.py)
* [Max Sum Contiguous Subsequence](dynamic_programming/max_sum_contiguous_subsequence.py)
* [Min Distance Up Bottom](dynamic_programming/min_distance_up_bottom.py)
* [Minimum Coin Change](dynamic_programming/minimum_coin_change.py)
* [Minimum Cost Path](dynamic_programming/minimum_cost_path.py)
* [Minimum Partition](dynamic_programming/minimum_partition.py)
* [Minimum Size Subarray Sum](dynamic_programming/minimum_size_subarray_sum.py)
* [Minimum Squares To Represent A Number](dynamic_programming/minimum_squares_to_represent_a_number.py)
* [Minimum Steps To One](dynamic_programming/minimum_steps_to_one.py)
* [Minimum Tickets Cost](dynamic_programming/minimum_tickets_cost.py)
* [Optimal Binary Search Tree](dynamic_programming/optimal_binary_search_tree.py)
* [Palindrome Partitioning](dynamic_programming/palindrome_partitioning.py)
* [Regex Match](dynamic_programming/regex_match.py)
* [Rod Cutting](dynamic_programming/rod_cutting.py)
* [Subset Generation](dynamic_programming/subset_generation.py)
* [Sum Of Subset](dynamic_programming/sum_of_subset.py)
* [Tribonacci](dynamic_programming/tribonacci.py)
* [Viterbi](dynamic_programming/viterbi.py)
* [Word Break](dynamic_programming/word_break.py)
## Electronics
* [Apparent Power](electronics/apparent_power.py)
* [Builtin Voltage](electronics/builtin_voltage.py)
* [Carrier Concentration](electronics/carrier_concentration.py)
* [Circular Convolution](electronics/circular_convolution.py)
@ -355,7 +348,6 @@
* [Electrical Impedance](electronics/electrical_impedance.py)
* [Ind Reactance](electronics/ind_reactance.py)
* [Ohms Law](electronics/ohms_law.py)
* [Real And Reactive Power](electronics/real_and_reactive_power.py)
* [Resistor Equivalence](electronics/resistor_equivalence.py)
* [Resonant Frequency](electronics/resonant_frequency.py)
@ -368,7 +360,6 @@
## Financial
* [Equated Monthly Installments](financial/equated_monthly_installments.py)
* [Interest](financial/interest.py)
* [Present Value](financial/present_value.py)
* [Price Plus Tax](financial/price_plus_tax.py)
## Fractals
@ -415,7 +406,6 @@
* [Dijkstra 2](graphs/dijkstra_2.py)
* [Dijkstra Algorithm](graphs/dijkstra_algorithm.py)
* [Dijkstra Alternate](graphs/dijkstra_alternate.py)
* [Dijkstra Binary Grid](graphs/dijkstra_binary_grid.py)
* [Dinic](graphs/dinic.py)
* [Directed And Undirected (Weighted) Graph](graphs/directed_and_undirected_(weighted)_graph.py)
* [Edmonds Karp Multiple Source And Sink](graphs/edmonds_karp_multiple_source_and_sink.py)
@ -425,9 +415,8 @@
* [Frequent Pattern Graph Miner](graphs/frequent_pattern_graph_miner.py)
* [G Topological Sort](graphs/g_topological_sort.py)
* [Gale Shapley Bigraph](graphs/gale_shapley_bigraph.py)
* [Graph Adjacency List](graphs/graph_adjacency_list.py)
* [Graph Adjacency Matrix](graphs/graph_adjacency_matrix.py)
* [Graph List](graphs/graph_list.py)
* [Graph Matrix](graphs/graph_matrix.py)
* [Graphs Floyd Warshall](graphs/graphs_floyd_warshall.py)
* [Greedy Best First](graphs/greedy_best_first.py)
* [Greedy Min Vertex Cover](graphs/greedy_min_vertex_cover.py)
@ -456,7 +445,6 @@
## Greedy Methods
* [Fractional Knapsack](greedy_methods/fractional_knapsack.py)
* [Fractional Knapsack 2](greedy_methods/fractional_knapsack_2.py)
* [Minimum Waiting Time](greedy_methods/minimum_waiting_time.py)
* [Optimal Merge Pattern](greedy_methods/optimal_merge_pattern.py)
## Hashes
@ -486,20 +474,15 @@
* [Lib](linear_algebra/src/lib.py)
* [Polynom For Points](linear_algebra/src/polynom_for_points.py)
* [Power Iteration](linear_algebra/src/power_iteration.py)
* [Rank Of Matrix](linear_algebra/src/rank_of_matrix.py)
* [Rayleigh Quotient](linear_algebra/src/rayleigh_quotient.py)
* [Schur Complement](linear_algebra/src/schur_complement.py)
* [Test Linear Algebra](linear_algebra/src/test_linear_algebra.py)
* [Transformations 2D](linear_algebra/src/transformations_2d.py)
## Linear Programming
* [Simplex](linear_programming/simplex.py)
## Machine Learning
* [Astar](machine_learning/astar.py)
* [Data Transformations](machine_learning/data_transformations.py)
* [Decision Tree](machine_learning/decision_tree.py)
* [Dimensionality Reduction](machine_learning/dimensionality_reduction.py)
* Forecasting
* [Run](machine_learning/forecasting/run.py)
* [Gradient Descent](machine_learning/gradient_descent.py)
@ -514,7 +497,7 @@
* Lstm
* [Lstm Prediction](machine_learning/lstm/lstm_prediction.py)
* [Multilayer Perceptron Classifier](machine_learning/multilayer_perceptron_classifier.py)
* [Polynomial Regression](machine_learning/polynomial_regression.py)
* [Polymonial Regression](machine_learning/polymonial_regression.py)
* [Scoring Functions](machine_learning/scoring_functions.py)
* [Self Organizing Map](machine_learning/self_organizing_map.py)
* [Sequential Minimum Optimization](machine_learning/sequential_minimum_optimization.py)
@ -525,6 +508,7 @@
* [Xgboost Regressor](machine_learning/xgboost_regressor.py)
## Maths
* [3N Plus 1](maths/3n_plus_1.py)
* [Abs](maths/abs.py)
* [Add](maths/add.py)
* [Addition Without Arithmetic](maths/addition_without_arithmetic.py)
@ -560,7 +544,6 @@
* [Dodecahedron](maths/dodecahedron.py)
* [Double Factorial Iterative](maths/double_factorial_iterative.py)
* [Double Factorial Recursive](maths/double_factorial_recursive.py)
* [Dual Number Automatic Differentiation](maths/dual_number_automatic_differentiation.py)
* [Entropy](maths/entropy.py)
* [Euclidean Distance](maths/euclidean_distance.py)
* [Euclidean Gcd](maths/euclidean_gcd.py)
@ -573,7 +556,9 @@
* [Fermat Little Theorem](maths/fermat_little_theorem.py)
* [Fibonacci](maths/fibonacci.py)
* [Find Max](maths/find_max.py)
* [Find Max Recursion](maths/find_max_recursion.py)
* [Find Min](maths/find_min.py)
* [Find Min Recursion](maths/find_min_recursion.py)
* [Floor](maths/floor.py)
* [Gamma](maths/gamma.py)
* [Gamma Recursive](maths/gamma_recursive.py)
@ -586,16 +571,16 @@
* [Hardy Ramanujanalgo](maths/hardy_ramanujanalgo.py)
* [Hexagonal Number](maths/hexagonal_number.py)
* [Integration By Simpson Approx](maths/integration_by_simpson_approx.py)
* [Interquartile Range](maths/interquartile_range.py)
* [Is Int Palindrome](maths/is_int_palindrome.py)
* [Is Ip V4 Address Valid](maths/is_ip_v4_address_valid.py)
* [Is Square Free](maths/is_square_free.py)
* [Jaccard Similarity](maths/jaccard_similarity.py)
* [Juggler Sequence](maths/juggler_sequence.py)
* [Kadanes](maths/kadanes.py)
* [Karatsuba](maths/karatsuba.py)
* [Krishnamurthy Number](maths/krishnamurthy_number.py)
* [Kth Lexicographic Permutation](maths/kth_lexicographic_permutation.py)
* [Largest Of Very Large Numbers](maths/largest_of_very_large_numbers.py)
* [Largest Subarray Sum](maths/largest_subarray_sum.py)
* [Least Common Multiple](maths/least_common_multiple.py)
* [Line Length](maths/line_length.py)
* [Liouville Lambda](maths/liouville_lambda.py)
@ -615,12 +600,10 @@
* [Newton Raphson](maths/newton_raphson.py)
* [Number Of Digits](maths/number_of_digits.py)
* [Numerical Integration](maths/numerical_integration.py)
* [Odd Sieve](maths/odd_sieve.py)
* [Perfect Cube](maths/perfect_cube.py)
* [Perfect Number](maths/perfect_number.py)
* [Perfect Square](maths/perfect_square.py)
* [Persistence](maths/persistence.py)
* [Pi Generator](maths/pi_generator.py)
* [Pi Monte Carlo Estimation](maths/pi_monte_carlo_estimation.py)
* [Points Are Collinear 3D](maths/points_are_collinear_3d.py)
* [Pollard Rho](maths/pollard_rho.py)
@ -642,7 +625,6 @@
* [Radians](maths/radians.py)
* [Radix2 Fft](maths/radix2_fft.py)
* [Relu](maths/relu.py)
* [Remove Digit](maths/remove_digit.py)
* [Runge Kutta](maths/runge_kutta.py)
* [Segmented Sieve](maths/segmented_sieve.py)
* Series
@ -658,7 +640,6 @@
* [Sigmoid Linear Unit](maths/sigmoid_linear_unit.py)
* [Signum](maths/signum.py)
* [Simpson Rule](maths/simpson_rule.py)
* [Simultaneous Linear Equation Solver](maths/simultaneous_linear_equation_solver.py)
* [Sin](maths/sin.py)
* [Sock Merchant](maths/sock_merchant.py)
* [Softmax](maths/softmax.py)
@ -669,7 +650,6 @@
* [Sum Of Harmonic Series](maths/sum_of_harmonic_series.py)
* [Sumset](maths/sumset.py)
* [Sylvester Sequence](maths/sylvester_sequence.py)
* [Tanh](maths/tanh.py)
* [Test Prime Check](maths/test_prime_check.py)
* [Trapezoidal Rule](maths/trapezoidal_rule.py)
* [Triplet Sum](maths/triplet_sum.py)
@ -684,7 +664,6 @@
## Matrix
* [Binary Search Matrix](matrix/binary_search_matrix.py)
* [Count Islands In Matrix](matrix/count_islands_in_matrix.py)
* [Count Negative Numbers In Sorted Matrix](matrix/count_negative_numbers_in_sorted_matrix.py)
* [Count Paths](matrix/count_paths.py)
* [Cramers Rule 2X2](matrix/cramers_rule_2x2.py)
* [Inverse Of Matrix](matrix/inverse_of_matrix.py)
@ -707,10 +686,9 @@
## Neural Network
* [2 Hidden Layers Neural Network](neural_network/2_hidden_layers_neural_network.py)
* Activation Functions
* [Exponential Linear Unit](neural_network/activation_functions/exponential_linear_unit.py)
* [Back Propagation Neural Network](neural_network/back_propagation_neural_network.py)
* [Convolution Neural Network](neural_network/convolution_neural_network.py)
* [Input Data](neural_network/input_data.py)
* [Perceptron](neural_network/perceptron.py)
* [Simple Neural Network](neural_network/simple_neural_network.py)
@ -724,16 +702,13 @@
* [Gauss Easter](other/gauss_easter.py)
* [Graham Scan](other/graham_scan.py)
* [Greedy](other/greedy.py)
* [Guess The Number Search](other/guess_the_number_search.py)
* [H Index](other/h_index.py)
* [Least Recently Used](other/least_recently_used.py)
* [Lfu Cache](other/lfu_cache.py)
* [Linear Congruential Generator](other/linear_congruential_generator.py)
* [Lru Cache](other/lru_cache.py)
* [Magicdiamondpattern](other/magicdiamondpattern.py)
* [Maximum Subsequence](other/maximum_subsequence.py)
* [Maximum Subarray](other/maximum_subarray.py)
* [Nested Brackets](other/nested_brackets.py)
* [Number Container System](other/number_container_system.py)
* [Password](other/password.py)
* [Quine](other/quine.py)
* [Scoring Algorithm](other/scoring_algorithm.py)
@ -741,9 +716,7 @@
* [Tower Of Hanoi](other/tower_of_hanoi.py)
## Physics
* [Altitude Pressure](physics/altitude_pressure.py)
* [Archimedes Principle](physics/archimedes_principle.py)
* [Basic Orbital Capture](physics/basic_orbital_capture.py)
* [Casimir Effect](physics/casimir_effect.py)
* [Centripetal Force](physics/centripetal_force.py)
* [Grahams Law](physics/grahams_law.py)
@ -759,7 +732,6 @@
* [Potential Energy](physics/potential_energy.py)
* [Rms Speed Of Molecule](physics/rms_speed_of_molecule.py)
* [Shear Stress](physics/shear_stress.py)
* [Speed Of Sound](physics/speed_of_sound.py)
## Project Euler
* Problem 001
@ -1065,6 +1037,7 @@
* [Q Fourier Transform](quantum/q_fourier_transform.py)
* [Q Full Adder](quantum/q_full_adder.py)
* [Quantum Entanglement](quantum/quantum_entanglement.py)
* [Quantum Random](quantum/quantum_random.py)
* [Quantum Teleportation](quantum/quantum_teleportation.py)
* [Ripple Adder Classic](quantum/ripple_adder_classic.py)
* [Single Qubit Measure](quantum/single_qubit_measure.py)
@ -1098,7 +1071,6 @@
## Sorts
* [Bead Sort](sorts/bead_sort.py)
* [Binary Insertion Sort](sorts/binary_insertion_sort.py)
* [Bitonic Sort](sorts/bitonic_sort.py)
* [Bogo Sort](sorts/bogo_sort.py)
* [Bubble Sort](sorts/bubble_sort.py)
@ -1167,10 +1139,10 @@
* [Indian Phone Validator](strings/indian_phone_validator.py)
* [Is Contains Unique Chars](strings/is_contains_unique_chars.py)
* [Is Isogram](strings/is_isogram.py)
* [Is Palindrome](strings/is_palindrome.py)
* [Is Pangram](strings/is_pangram.py)
* [Is Spain National Id](strings/is_spain_national_id.py)
* [Is Srilankan Phone Number](strings/is_srilankan_phone_number.py)
* [Is Valid Email Address](strings/is_valid_email_address.py)
* [Jaro Winkler](strings/jaro_winkler.py)
* [Join](strings/join.py)
* [Knuth Morris Pratt](strings/knuth_morris_pratt.py)
@ -1189,9 +1161,7 @@
* [Reverse Words](strings/reverse_words.py)
* [Snake Case To Camel Pascal Case](strings/snake_case_to_camel_pascal_case.py)
* [Split](strings/split.py)
* [String Switch Case](strings/string_switch_case.py)
* [Text Justification](strings/text_justification.py)
* [Top K Frequent Words](strings/top_k_frequent_words.py)
* [Upper](strings/upper.py)
* [Wave](strings/wave.py)
* [Wildcard Pattern Matching](strings/wildcard_pattern_matching.py)
@ -1211,6 +1181,7 @@
* [Daily Horoscope](web_programming/daily_horoscope.py)
* [Download Images From Google Query](web_programming/download_images_from_google_query.py)
* [Emails From Url](web_programming/emails_from_url.py)
* [Fetch Anime And Play](web_programming/fetch_anime_and_play.py)
* [Fetch Bbc News](web_programming/fetch_bbc_news.py)
* [Fetch Github Info](web_programming/fetch_github_info.py)
* [Fetch Jobs](web_programming/fetch_jobs.py)

View File

@ -13,7 +13,7 @@
<img src="https://img.shields.io/static/v1.svg?label=Contributions&message=Welcome&color=0059b3&style=flat-square" height="20" alt="Contributions Welcome">
</a>
<img src="https://img.shields.io/github/repo-size/TheAlgorithms/Python.svg?label=Repo%20size&style=flat-square" height="20">
<a href="https://the-algorithms.com/discord">
<a href="https://discord.gg/c7MnfGFGa6">
<img src="https://img.shields.io/discord/808045925556682782.svg?logo=discord&colorB=7289DA&style=flat-square" height="20" alt="Discord chat">
</a>
<a href="https://gitter.im/TheAlgorithms/community">
@ -42,7 +42,7 @@ Read through our [Contribution Guidelines](CONTRIBUTING.md) before you contribut
## Community Channels
We are on [Discord](https://the-algorithms.com/discord) and [Gitter](https://gitter.im/TheAlgorithms/community)! Community channels are a great way for you to ask questions and get help. Please join us!
We are on [Discord](https://discord.gg/c7MnfGFGa6) and [Gitter](https://gitter.im/TheAlgorithms/community)! Community channels are a great way for you to ask questions and get help. Please join us!
## List of Algorithms

View File

@ -49,9 +49,7 @@ def jacobi_iteration_method(
>>> constant = np.array([[2], [-6]])
>>> init_val = [0.5, -0.5, -0.5]
>>> iterations = 3
>>> jacobi_iteration_method(
... coefficient, constant, init_val, iterations
... ) # doctest: +NORMALIZE_WHITESPACE
>>> jacobi_iteration_method(coefficient, constant, init_val, iterations)
Traceback (most recent call last):
...
ValueError: Coefficient and constant matrices dimensions must be nxn and nx1 but
@ -61,9 +59,7 @@ def jacobi_iteration_method(
>>> constant = np.array([[2], [-6], [-4]])
>>> init_val = [0.5, -0.5]
>>> iterations = 3
>>> jacobi_iteration_method(
... coefficient, constant, init_val, iterations
... ) # doctest: +NORMALIZE_WHITESPACE
>>> jacobi_iteration_method(coefficient, constant, init_val, iterations)
Traceback (most recent call last):
...
ValueError: Number of initial values must be equal to number of rows in coefficient
@ -83,26 +79,24 @@ def jacobi_iteration_method(
rows2, cols2 = constant_matrix.shape
if rows1 != cols1:
msg = f"Coefficient matrix dimensions must be nxn but received {rows1}x{cols1}"
raise ValueError(msg)
raise ValueError(
f"Coefficient matrix dimensions must be nxn but received {rows1}x{cols1}"
)
if cols2 != 1:
msg = f"Constant matrix must be nx1 but received {rows2}x{cols2}"
raise ValueError(msg)
raise ValueError(f"Constant matrix must be nx1 but received {rows2}x{cols2}")
if rows1 != rows2:
msg = (
"Coefficient and constant matrices dimensions must be nxn and nx1 but "
f"received {rows1}x{cols1} and {rows2}x{cols2}"
raise ValueError(
f"""Coefficient and constant matrices dimensions must be nxn and nx1 but
received {rows1}x{cols1} and {rows2}x{cols2}"""
)
raise ValueError(msg)
if len(init_val) != rows1:
msg = (
"Number of initial values must be equal to number of rows in coefficient "
f"matrix but received {len(init_val)} and {rows1}"
raise ValueError(
f"""Number of initial values must be equal to number of rows in coefficient
matrix but received {len(init_val)} and {rows1}"""
)
raise ValueError(msg)
if iterations <= 0:
raise ValueError("Iterations must be at least 1")

View File

@ -80,11 +80,10 @@ def lower_upper_decomposition(table: np.ndarray) -> tuple[np.ndarray, np.ndarray
# Ensure that table is a square array
rows, columns = np.shape(table)
if rows != columns:
msg = (
"'table' has to be of square shaped array but got a "
raise ValueError(
f"'table' has to be of square shaped array but got a "
f"{rows}x{columns} array:\n{table}"
)
raise ValueError(msg)
lower = np.zeros((rows, columns))
upper = np.zeros((rows, columns))

View File

@ -25,11 +25,9 @@ def newton_raphson(
"""
x = a
while True:
x = Decimal(x) - (
Decimal(eval(func)) / Decimal(eval(str(diff(func)))) # noqa: S307
)
x = Decimal(x) - (Decimal(eval(func)) / Decimal(eval(str(diff(func)))))
# This number dictates the accuracy of the answer
if abs(eval(func)) < precision: # noqa: S307
if abs(eval(func)) < precision:
return float(x)

View File

@ -50,18 +50,16 @@ class IIRFilter:
a_coeffs = [1.0, *a_coeffs]
if len(a_coeffs) != self.order + 1:
msg = (
f"Expected a_coeffs to have {self.order + 1} elements "
f"for {self.order}-order filter, got {len(a_coeffs)}"
raise ValueError(
f"Expected a_coeffs to have {self.order + 1} elements for {self.order}"
f"-order filter, got {len(a_coeffs)}"
)
raise ValueError(msg)
if len(b_coeffs) != self.order + 1:
msg = (
f"Expected b_coeffs to have {self.order + 1} elements "
f"for {self.order}-order filter, got {len(a_coeffs)}"
raise ValueError(
f"Expected b_coeffs to have {self.order + 1} elements for {self.order}"
f"-order filter, got {len(a_coeffs)}"
)
raise ValueError(msg)
self.a_coeffs = a_coeffs
self.b_coeffs = b_coeffs

View File

@ -91,8 +91,7 @@ def open_knight_tour(n: int) -> list[list[int]]:
return board
board[i][j] = 0
msg = f"Open Kight Tour cannot be performed on a board of size {n}"
raise ValueError(msg)
raise ValueError(f"Open Kight Tour cannot be performed on a board of size {n}")
if __name__ == "__main__":

View File

@ -1,93 +0,0 @@
"""
Problem source: https://www.hackerrank.com/challenges/the-power-sum/problem
Find the number of ways that a given integer X, can be expressed as the sum
of the Nth powers of unique, natural numbers. For example, if X=13 and N=2.
We have to find all combinations of unique squares adding up to 13.
The only solution is 2^2+3^2. Constraints: 1<=X<=1000, 2<=N<=10.
"""
from math import pow
def backtrack(
needed_sum: int,
power: int,
current_number: int,
current_sum: int,
solutions_count: int,
) -> tuple[int, int]:
"""
>>> backtrack(13, 2, 1, 0, 0)
(0, 1)
>>> backtrack(100, 2, 1, 0, 0)
(0, 3)
>>> backtrack(100, 3, 1, 0, 0)
(0, 1)
>>> backtrack(800, 2, 1, 0, 0)
(0, 561)
>>> backtrack(1000, 10, 1, 0, 0)
(0, 0)
>>> backtrack(400, 2, 1, 0, 0)
(0, 55)
>>> backtrack(50, 1, 1, 0, 0)
(0, 3658)
"""
if current_sum == needed_sum:
# If the sum of the powers is equal to needed_sum, then we have a solution.
solutions_count += 1
return current_sum, solutions_count
i_to_n = int(pow(current_number, power))
if current_sum + i_to_n <= needed_sum:
# If the sum of the powers is less than needed_sum, then continue adding powers.
current_sum += i_to_n
current_sum, solutions_count = backtrack(
needed_sum, power, current_number + 1, current_sum, solutions_count
)
current_sum -= i_to_n
if i_to_n < needed_sum:
# If the power of i is less than needed_sum, then try with the next power.
current_sum, solutions_count = backtrack(
needed_sum, power, current_number + 1, current_sum, solutions_count
)
return current_sum, solutions_count
def solve(needed_sum: int, power: int) -> int:
"""
>>> solve(13, 2)
1
>>> solve(100, 2)
3
>>> solve(100, 3)
1
>>> solve(800, 2)
561
>>> solve(1000, 10)
0
>>> solve(400, 2)
55
>>> solve(50, 1)
Traceback (most recent call last):
...
ValueError: Invalid input
needed_sum must be between 1 and 1000, power between 2 and 10.
>>> solve(-10, 5)
Traceback (most recent call last):
...
ValueError: Invalid input
needed_sum must be between 1 and 1000, power between 2 and 10.
"""
if not (1 <= needed_sum <= 1000 and 2 <= power <= 10):
raise ValueError(
"Invalid input\n"
"needed_sum must be between 1 and 1000, power between 2 and 10."
)
return backtrack(needed_sum, power, 1, 0, 0)[1] # Return the solutions_count
if __name__ == "__main__":
import doctest
doctest.testmod()

View File

@ -14,11 +14,10 @@ def get_reverse_bit_string(number: int) -> str:
TypeError: operation can not be conducted on a object of type str
"""
if not isinstance(number, int):
msg = (
raise TypeError(
"operation can not be conducted on a object of type "
f"{type(number).__name__}"
)
raise TypeError(msg)
bit_string = ""
for _ in range(0, 32):
bit_string += str(number % 2)

View File

@ -43,8 +43,6 @@ def test_and_gate() -> None:
if __name__ == "__main__":
test_and_gate()
print(and_gate(1, 0))
print(and_gate(0, 0))
print(and_gate(0, 1))
print(and_gate(1, 1))

View File

@ -10,7 +10,7 @@ Python:
- 3.5
Usage:
- $python3 game_of_life <canvas_size:int>
- $python3 game_o_life <canvas_size:int>
Game-Of-Life Rules:
@ -34,7 +34,7 @@ import numpy as np
from matplotlib import pyplot as plt
from matplotlib.colors import ListedColormap
usage_doc = "Usage of script: script_name <size_of_canvas:int>"
usage_doc = "Usage of script: script_nama <size_of_canvas:int>"
choice = [0] * 100 + [1] * 10
random.shuffle(choice)
@ -52,8 +52,7 @@ def seed(canvas: list[list[bool]]) -> None:
def run(canvas: list[list[bool]]) -> list[list[bool]]:
"""
This function runs the rules of game through all points, and changes their
"""This function runs the rules of game through all points, and changes their
status accordingly.(in the same canvas)
@Args:
--
@ -61,7 +60,7 @@ def run(canvas: list[list[bool]]) -> list[list[bool]]:
@returns:
--
canvas of population after one step
None
"""
current_canvas = np.array(canvas)
next_gen_canvas = np.array(create_canvas(current_canvas.shape[0]))
@ -71,7 +70,10 @@ def run(canvas: list[list[bool]]) -> list[list[bool]]:
pt, current_canvas[r - 1 : r + 2, c - 1 : c + 2]
)
return next_gen_canvas.tolist()
current_canvas = next_gen_canvas
del next_gen_canvas # cleaning memory as we move on.
return_canvas: list[list[bool]] = current_canvas.tolist()
return return_canvas
def __judge_point(pt: bool, neighbours: list[list[bool]]) -> bool:
@ -96,7 +98,7 @@ def __judge_point(pt: bool, neighbours: list[list[bool]]) -> bool:
if pt:
if alive < 2:
state = False
elif alive in {2, 3}:
elif alive == 2 or alive == 3:
state = True
elif alive > 3:
state = False

View File

@ -1,550 +0,0 @@
"""
Wa-Tor algorithm (1984)
@ https://en.wikipedia.org/wiki/Wa-Tor
@ https://beltoforion.de/en/wator/
@ https://beltoforion.de/en/wator/images/wator_medium.webm
This solution aims to completely remove any systematic approach
to the Wa-Tor planet, and utilise fully random methods.
The constants are a working set that allows the Wa-Tor planet
to result in one of the three possible results.
"""
from collections.abc import Callable
from random import randint, shuffle
from time import sleep
from typing import Literal
WIDTH = 50 # Width of the Wa-Tor planet
HEIGHT = 50 # Height of the Wa-Tor planet
PREY_INITIAL_COUNT = 30 # The initial number of prey entities
PREY_REPRODUCTION_TIME = 5 # The chronons before reproducing
PREDATOR_INITIAL_COUNT = 50 # The initial number of predator entities
# The initial energy value of predator entities
PREDATOR_INITIAL_ENERGY_VALUE = 15
# The energy value provided when consuming prey
PREDATOR_FOOD_VALUE = 5
PREDATOR_REPRODUCTION_TIME = 20 # The chronons before reproducing
MAX_ENTITIES = 500 # The max number of organisms on the board
# The number of entities to delete from the unbalanced side
DELETE_UNBALANCED_ENTITIES = 50
class Entity:
"""
Represents an entity (either prey or predator).
>>> e = Entity(True, coords=(0, 0))
>>> e.prey
True
>>> e.coords
(0, 0)
>>> e.alive
True
"""
def __init__(self, prey: bool, coords: tuple[int, int]) -> None:
self.prey = prey
# The (row, col) pos of the entity
self.coords = coords
self.remaining_reproduction_time = (
PREY_REPRODUCTION_TIME if prey else PREDATOR_REPRODUCTION_TIME
)
self.energy_value = None if prey is True else PREDATOR_INITIAL_ENERGY_VALUE
self.alive = True
def reset_reproduction_time(self) -> None:
"""
>>> e = Entity(True, coords=(0, 0))
>>> e.reset_reproduction_time()
>>> e.remaining_reproduction_time == PREY_REPRODUCTION_TIME
True
>>> e = Entity(False, coords=(0, 0))
>>> e.reset_reproduction_time()
>>> e.remaining_reproduction_time == PREDATOR_REPRODUCTION_TIME
True
"""
self.remaining_reproduction_time = (
PREY_REPRODUCTION_TIME if self.prey is True else PREDATOR_REPRODUCTION_TIME
)
def __repr__(self) -> str:
"""
>>> Entity(prey=True, coords=(1, 1))
Entity(prey=True, coords=(1, 1), remaining_reproduction_time=5)
>>> Entity(prey=False, coords=(2, 1)) # doctest: +NORMALIZE_WHITESPACE
Entity(prey=False, coords=(2, 1),
remaining_reproduction_time=20, energy_value=15)
"""
repr_ = (
f"Entity(prey={self.prey}, coords={self.coords}, "
f"remaining_reproduction_time={self.remaining_reproduction_time}"
)
if self.energy_value is not None:
repr_ += f", energy_value={self.energy_value}"
return f"{repr_})"
class WaTor:
"""
Represents the main Wa-Tor algorithm.
:attr time_passed: A function that is called every time
time passes (a chronon) in order to visually display
the new Wa-Tor planet. The time_passed function can block
using time.sleep to slow the algorithm progression.
>>> wt = WaTor(10, 15)
>>> wt.width
10
>>> wt.height
15
>>> len(wt.planet)
15
>>> len(wt.planet[0])
10
>>> len(wt.get_entities()) == PREDATOR_INITIAL_COUNT + PREY_INITIAL_COUNT
True
"""
time_passed: Callable[["WaTor", int], None] | None
def __init__(self, width: int, height: int) -> None:
self.width = width
self.height = height
self.time_passed = None
self.planet: list[list[Entity | None]] = [[None] * width for _ in range(height)]
# Populate planet with predators and prey randomly
for _ in range(PREY_INITIAL_COUNT):
self.add_entity(prey=True)
for _ in range(PREDATOR_INITIAL_COUNT):
self.add_entity(prey=False)
self.set_planet(self.planet)
def set_planet(self, planet: list[list[Entity | None]]) -> None:
"""
Ease of access for testing
>>> wt = WaTor(WIDTH, HEIGHT)
>>> planet = [
... [None, None, None],
... [None, Entity(True, coords=(1, 1)), None]
... ]
>>> wt.set_planet(planet)
>>> wt.planet == planet
True
>>> wt.width
3
>>> wt.height
2
"""
self.planet = planet
self.width = len(planet[0])
self.height = len(planet)
def add_entity(self, prey: bool) -> None:
"""
Adds an entity, making sure the entity does
not override another entity
>>> wt = WaTor(WIDTH, HEIGHT)
>>> wt.set_planet([[None, None], [None, None]])
>>> wt.add_entity(True)
>>> len(wt.get_entities())
1
>>> wt.add_entity(False)
>>> len(wt.get_entities())
2
"""
while True:
row, col = randint(0, self.height - 1), randint(0, self.width - 1)
if self.planet[row][col] is None:
self.planet[row][col] = Entity(prey=prey, coords=(row, col))
return
def get_entities(self) -> list[Entity]:
"""
Returns a list of all the entities within the planet.
>>> wt = WaTor(WIDTH, HEIGHT)
>>> len(wt.get_entities()) == PREDATOR_INITIAL_COUNT + PREY_INITIAL_COUNT
True
"""
return [entity for column in self.planet for entity in column if entity]
def balance_predators_and_prey(self) -> None:
"""
Balances predators and preys so that prey
can not dominate the predators, blocking up
space for them to reproduce.
>>> wt = WaTor(WIDTH, HEIGHT)
>>> for i in range(2000):
... row, col = i // HEIGHT, i % WIDTH
... wt.planet[row][col] = Entity(True, coords=(row, col))
>>> entities = len(wt.get_entities())
>>> wt.balance_predators_and_prey()
>>> len(wt.get_entities()) == entities
False
"""
entities = self.get_entities()
shuffle(entities)
if len(entities) >= MAX_ENTITIES - MAX_ENTITIES / 10:
prey = [entity for entity in entities if entity.prey]
predators = [entity for entity in entities if not entity.prey]
prey_count, predator_count = len(prey), len(predators)
entities_to_purge = (
prey[:DELETE_UNBALANCED_ENTITIES]
if prey_count > predator_count
else predators[:DELETE_UNBALANCED_ENTITIES]
)
for entity in entities_to_purge:
self.planet[entity.coords[0]][entity.coords[1]] = None
def get_surrounding_prey(self, entity: Entity) -> list[Entity]:
"""
Returns all the prey entities around (N, S, E, W) a predator entity.
Subtly different to the try_to_move_to_unoccupied square.
>>> wt = WaTor(WIDTH, HEIGHT)
>>> wt.set_planet([
... [None, Entity(True, (0, 1)), None],
... [None, Entity(False, (1, 1)), None],
... [None, Entity(True, (2, 1)), None]])
>>> wt.get_surrounding_prey(
... Entity(False, (1, 1))) # doctest: +NORMALIZE_WHITESPACE
[Entity(prey=True, coords=(0, 1), remaining_reproduction_time=5),
Entity(prey=True, coords=(2, 1), remaining_reproduction_time=5)]
>>> wt.set_planet([[Entity(False, (0, 0))]])
>>> wt.get_surrounding_prey(Entity(False, (0, 0)))
[]
>>> wt.set_planet([
... [Entity(True, (0, 0)), Entity(False, (1, 0)), Entity(False, (2, 0))],
... [None, Entity(False, (1, 1)), Entity(True, (2, 1))],
... [None, None, None]])
>>> wt.get_surrounding_prey(Entity(False, (1, 0)))
[Entity(prey=True, coords=(0, 0), remaining_reproduction_time=5)]
"""
row, col = entity.coords
adjacent: list[tuple[int, int]] = [
(row - 1, col), # North
(row + 1, col), # South
(row, col - 1), # West
(row, col + 1), # East
]
return [
ent
for r, c in adjacent
if 0 <= r < self.height
and 0 <= c < self.width
and (ent := self.planet[r][c]) is not None
and ent.prey
]
def move_and_reproduce(
self, entity: Entity, direction_orders: list[Literal["N", "E", "S", "W"]]
) -> None:
"""
Attempts to move to an unoccupied neighbouring square
in either of the four directions (North, South, East, West).
If the move was successful and the remaining_reproduction time is
equal to 0, then a new prey or predator can also be created
in the previous square.
:param direction_orders: Ordered list (like priority queue) depicting
order to attempt to move. Removes any systematic
approach of checking neighbouring squares.
>>> planet = [
... [None, None, None],
... [None, Entity(True, coords=(1, 1)), None],
... [None, None, None]
... ]
>>> wt = WaTor(WIDTH, HEIGHT)
>>> wt.set_planet(planet)
>>> wt.move_and_reproduce(Entity(True, coords=(1, 1)), direction_orders=["N"])
>>> wt.planet # doctest: +NORMALIZE_WHITESPACE
[[None, Entity(prey=True, coords=(0, 1), remaining_reproduction_time=4), None],
[None, None, None],
[None, None, None]]
>>> wt.planet[0][0] = Entity(True, coords=(0, 0))
>>> wt.move_and_reproduce(Entity(True, coords=(0, 1)),
... direction_orders=["N", "W", "E", "S"])
>>> wt.planet # doctest: +NORMALIZE_WHITESPACE
[[Entity(prey=True, coords=(0, 0), remaining_reproduction_time=5), None,
Entity(prey=True, coords=(0, 2), remaining_reproduction_time=4)],
[None, None, None],
[None, None, None]]
>>> wt.planet[0][1] = wt.planet[0][2]
>>> wt.planet[0][2] = None
>>> wt.move_and_reproduce(Entity(True, coords=(0, 1)),
... direction_orders=["N", "W", "S", "E"])
>>> wt.planet # doctest: +NORMALIZE_WHITESPACE
[[Entity(prey=True, coords=(0, 0), remaining_reproduction_time=5), None, None],
[None, Entity(prey=True, coords=(1, 1), remaining_reproduction_time=4), None],
[None, None, None]]
>>> wt = WaTor(WIDTH, HEIGHT)
>>> reproducable_entity = Entity(False, coords=(0, 1))
>>> reproducable_entity.remaining_reproduction_time = 0
>>> wt.planet = [[None, reproducable_entity]]
>>> wt.move_and_reproduce(reproducable_entity,
... direction_orders=["N", "W", "S", "E"])
>>> wt.planet # doctest: +NORMALIZE_WHITESPACE
[[Entity(prey=False, coords=(0, 0),
remaining_reproduction_time=20, energy_value=15),
Entity(prey=False, coords=(0, 1), remaining_reproduction_time=20,
energy_value=15)]]
"""
row, col = coords = entity.coords
adjacent_squares: dict[Literal["N", "E", "S", "W"], tuple[int, int]] = {
"N": (row - 1, col), # North
"S": (row + 1, col), # South
"W": (row, col - 1), # West
"E": (row, col + 1), # East
}
# Weight adjacent locations
adjacent: list[tuple[int, int]] = []
for order in direction_orders:
adjacent.append(adjacent_squares[order])
for r, c in adjacent:
if (
0 <= r < self.height
and 0 <= c < self.width
and self.planet[r][c] is None
):
# Move entity to empty adjacent square
self.planet[r][c] = entity
self.planet[row][col] = None
entity.coords = (r, c)
break
# (2.) See if it possible to reproduce in previous square
if coords != entity.coords and entity.remaining_reproduction_time <= 0:
# Check if the entities on the planet is less than the max limit
if len(self.get_entities()) < MAX_ENTITIES:
# Reproduce in previous square
self.planet[row][col] = Entity(prey=entity.prey, coords=coords)
entity.reset_reproduction_time()
else:
entity.remaining_reproduction_time -= 1
def perform_prey_actions(
self, entity: Entity, direction_orders: list[Literal["N", "E", "S", "W"]]
) -> None:
"""
Performs the actions for a prey entity
For prey the rules are:
1. At each chronon, a prey moves randomly to one of the adjacent unoccupied
squares. If there are no free squares, no movement takes place.
2. Once a prey has survived a certain number of chronons it may reproduce.
This is done as it moves to a neighbouring square,
leaving behind a new prey in its old position.
Its reproduction time is also reset to zero.
>>> wt = WaTor(WIDTH, HEIGHT)
>>> reproducable_entity = Entity(True, coords=(0, 1))
>>> reproducable_entity.remaining_reproduction_time = 0
>>> wt.planet = [[None, reproducable_entity]]
>>> wt.perform_prey_actions(reproducable_entity,
... direction_orders=["N", "W", "S", "E"])
>>> wt.planet # doctest: +NORMALIZE_WHITESPACE
[[Entity(prey=True, coords=(0, 0), remaining_reproduction_time=5),
Entity(prey=True, coords=(0, 1), remaining_reproduction_time=5)]]
"""
self.move_and_reproduce(entity, direction_orders)
def perform_predator_actions(
self,
entity: Entity,
occupied_by_prey_coords: tuple[int, int] | None,
direction_orders: list[Literal["N", "E", "S", "W"]],
) -> None:
"""
Performs the actions for a predator entity
:param occupied_by_prey_coords: Move to this location if there is prey there
For predators the rules are:
1. At each chronon, a predator moves randomly to an adjacent square occupied
by a prey. If there is none, the predator moves to a random adjacent
unoccupied square. If there are no free squares, no movement takes place.
2. At each chronon, each predator is deprived of a unit of energy.
3. Upon reaching zero energy, a predator dies.
4. If a predator moves to a square occupied by a prey,
it eats the prey and earns a certain amount of energy.
5. Once a predator has survived a certain number of chronons
it may reproduce in exactly the same way as the prey.
>>> wt = WaTor(WIDTH, HEIGHT)
>>> wt.set_planet([[Entity(True, coords=(0, 0)), Entity(False, coords=(0, 1))]])
>>> wt.perform_predator_actions(Entity(False, coords=(0, 1)), (0, 0), [])
>>> wt.planet # doctest: +NORMALIZE_WHITESPACE
[[Entity(prey=False, coords=(0, 0),
remaining_reproduction_time=20, energy_value=19), None]]
"""
assert entity.energy_value is not None # [type checking]
# (3.) If the entity has 0 energy, it will die
if entity.energy_value == 0:
self.planet[entity.coords[0]][entity.coords[1]] = None
return
# (1.) Move to entity if possible
if occupied_by_prey_coords is not None:
# Kill the prey
prey = self.planet[occupied_by_prey_coords[0]][occupied_by_prey_coords[1]]
assert prey is not None
prey.alive = False
# Move onto prey
self.planet[occupied_by_prey_coords[0]][occupied_by_prey_coords[1]] = entity
self.planet[entity.coords[0]][entity.coords[1]] = None
entity.coords = occupied_by_prey_coords
# (4.) Eats the prey and earns energy
entity.energy_value += PREDATOR_FOOD_VALUE
else:
# (5.) If it has survived the certain number of chronons it will also
# reproduce in this function
self.move_and_reproduce(entity, direction_orders)
# (2.) Each chronon, the predator is deprived of a unit of energy
entity.energy_value -= 1
def run(self, *, iteration_count: int) -> None:
"""
Emulate time passing by looping iteration_count times
>>> wt = WaTor(WIDTH, HEIGHT)
>>> wt.run(iteration_count=PREDATOR_INITIAL_ENERGY_VALUE - 1)
>>> len(list(filter(lambda entity: entity.prey is False,
... wt.get_entities()))) >= PREDATOR_INITIAL_COUNT
True
"""
for iter_num in range(iteration_count):
# Generate list of all entities in order to randomly
# pop an entity at a time to simulate true randomness
# This removes the systematic approach of iterating
# through each entity width by height
all_entities = self.get_entities()
for __ in range(len(all_entities)):
entity = all_entities.pop(randint(0, len(all_entities) - 1))
if entity.alive is False:
continue
directions: list[Literal["N", "E", "S", "W"]] = ["N", "E", "S", "W"]
shuffle(directions) # Randomly shuffle directions
if entity.prey:
self.perform_prey_actions(entity, directions)
else:
# Create list of surrounding prey
surrounding_prey = self.get_surrounding_prey(entity)
surrounding_prey_coords = None
if surrounding_prey:
# Again, randomly shuffle directions
shuffle(surrounding_prey)
surrounding_prey_coords = surrounding_prey[0].coords
self.perform_predator_actions(
entity, surrounding_prey_coords, directions
)
# Balance out the predators and prey
self.balance_predators_and_prey()
if self.time_passed is not None:
# Call time_passed function for Wa-Tor planet
# visualisation in a terminal or a graph.
self.time_passed(self, iter_num)
def visualise(wt: WaTor, iter_number: int, *, colour: bool = True) -> None:
"""
Visually displays the Wa-Tor planet using
an ascii code in terminal to clear and re-print
the Wa-Tor planet at intervals.
Uses ascii colour codes to colourfully display
the predators and prey.
(0x60f197) Prey = #
(0xfffff) Predator = x
>>> wt = WaTor(30, 30)
>>> wt.set_planet([
... [Entity(True, coords=(0, 0)), Entity(False, coords=(0, 1)), None],
... [Entity(False, coords=(1, 0)), None, Entity(False, coords=(1, 2))],
... [None, Entity(True, coords=(2, 1)), None]
... ])
>>> visualise(wt, 0, colour=False) # doctest: +NORMALIZE_WHITESPACE
# x .
x . x
. # .
<BLANKLINE>
Iteration: 0 | Prey count: 2 | Predator count: 3 |
"""
if colour:
__import__("os").system("")
print("\x1b[0;0H\x1b[2J\x1b[?25l")
reprint = "\x1b[0;0H" if colour else ""
ansi_colour_end = "\x1b[0m " if colour else " "
planet = wt.planet
output = ""
# Iterate over every entity in the planet
for row in planet:
for entity in row:
if entity is None:
output += " . "
else:
if colour is True:
output += (
"\x1b[38;2;96;241;151m"
if entity.prey
else "\x1b[38;2;255;255;15m"
)
output += f" {'#' if entity.prey else 'x'}{ansi_colour_end}"
output += "\n"
entities = wt.get_entities()
prey_count = sum(entity.prey for entity in entities)
print(
f"{output}\n Iteration: {iter_number} | Prey count: {prey_count} | "
f"Predator count: {len(entities) - prey_count} | {reprint}"
)
# Block the thread to be able to visualise seeing the algorithm
sleep(0.05)
if __name__ == "__main__":
import doctest
doctest.testmod()
wt = WaTor(WIDTH, HEIGHT)
wt.time_passed = visualise
wt.run(iteration_count=100_000)

View File

@ -34,8 +34,9 @@ def base64_encode(data: bytes) -> bytes:
"""
# Make sure the supplied data is a bytes-like object
if not isinstance(data, bytes):
msg = f"a bytes-like object is required, not '{data.__class__.__name__}'"
raise TypeError(msg)
raise TypeError(
f"a bytes-like object is required, not '{data.__class__.__name__}'"
)
binary_stream = "".join(bin(byte)[2:].zfill(8) for byte in data)
@ -87,11 +88,10 @@ def base64_decode(encoded_data: str) -> bytes:
"""
# Make sure encoded_data is either a string or a bytes-like object
if not isinstance(encoded_data, bytes) and not isinstance(encoded_data, str):
msg = (
"argument should be a bytes-like object or ASCII string, "
f"not '{encoded_data.__class__.__name__}'"
raise TypeError(
"argument should be a bytes-like object or ASCII string, not "
f"'{encoded_data.__class__.__name__}'"
)
raise TypeError(msg)
# In case encoded_data is a bytes-like object, make sure it contains only
# ASCII characters so we convert it to a string object

View File

@ -5,7 +5,7 @@ Author: Mohit Radadiya
from string import ascii_uppercase
dict1 = {char: i for i, char in enumerate(ascii_uppercase)}
dict2 = dict(enumerate(ascii_uppercase))
dict2 = {i: char for i, char in enumerate(ascii_uppercase)}
# This function generates the key in

View File

@ -6,8 +6,7 @@ def gcd(a: int, b: int) -> int:
def find_mod_inverse(a: int, m: int) -> int:
if gcd(a, m) != 1:
msg = f"mod inverse of {a!r} and {m!r} does not exist"
raise ValueError(msg)
raise ValueError(f"mod inverse of {a!r} and {m!r} does not exist")
u1, u2, u3 = 1, 0, a
v1, v2, v3 = 0, 1, m
while v3 != 0:

View File

@ -10,13 +10,13 @@ primes = {
5: {
"prime": int(
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"
"29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
"EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
"E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
"EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
"C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
"83655D23DCA3AD961C62F356208552BB9ED529077096966D"
"670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF",
+ "29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
+ "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
+ "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
+ "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
+ "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
+ "83655D23DCA3AD961C62F356208552BB9ED529077096966D"
+ "670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF",
base=16,
),
"generator": 2,
@ -25,16 +25,16 @@ primes = {
14: {
"prime": int(
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"
"29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
"EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
"E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
"EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
"C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
"83655D23DCA3AD961C62F356208552BB9ED529077096966D"
"670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"
"E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"
"DE2BCBF6955817183995497CEA956AE515D2261898FA0510"
"15728E5A8AACAA68FFFFFFFFFFFFFFFF",
+ "29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
+ "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
+ "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
+ "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
+ "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
+ "83655D23DCA3AD961C62F356208552BB9ED529077096966D"
+ "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"
+ "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"
+ "DE2BCBF6955817183995497CEA956AE515D2261898FA0510"
+ "15728E5A8AACAA68FFFFFFFFFFFFFFFF",
base=16,
),
"generator": 2,
@ -43,21 +43,21 @@ primes = {
15: {
"prime": int(
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"
"29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
"EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
"E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
"EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
"C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
"83655D23DCA3AD961C62F356208552BB9ED529077096966D"
"670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"
"E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"
"DE2BCBF6955817183995497CEA956AE515D2261898FA0510"
"15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64"
"ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7"
"ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B"
"F12FFA06D98A0864D87602733EC86A64521F2B18177B200C"
"BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31"
"43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF",
+ "29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
+ "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
+ "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
+ "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
+ "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
+ "83655D23DCA3AD961C62F356208552BB9ED529077096966D"
+ "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"
+ "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"
+ "DE2BCBF6955817183995497CEA956AE515D2261898FA0510"
+ "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64"
+ "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7"
+ "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B"
+ "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C"
+ "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31"
+ "43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF",
base=16,
),
"generator": 2,
@ -66,27 +66,27 @@ primes = {
16: {
"prime": int(
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"
"29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
"EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
"E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
"EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
"C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
"83655D23DCA3AD961C62F356208552BB9ED529077096966D"
"670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"
"E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"
"DE2BCBF6955817183995497CEA956AE515D2261898FA0510"
"15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64"
"ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7"
"ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B"
"F12FFA06D98A0864D87602733EC86A64521F2B18177B200C"
"BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31"
"43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7"
"88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA"
"2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6"
"287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED"
"1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9"
"93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199"
"FFFFFFFFFFFFFFFF",
+ "29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
+ "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
+ "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
+ "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
+ "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
+ "83655D23DCA3AD961C62F356208552BB9ED529077096966D"
+ "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"
+ "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"
+ "DE2BCBF6955817183995497CEA956AE515D2261898FA0510"
+ "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64"
+ "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7"
+ "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B"
+ "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C"
+ "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31"
+ "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7"
+ "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA"
+ "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6"
+ "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED"
+ "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9"
+ "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199"
+ "FFFFFFFFFFFFFFFF",
base=16,
),
"generator": 2,
@ -95,33 +95,33 @@ primes = {
17: {
"prime": int(
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08"
"8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B"
"302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9"
"A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6"
"49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8"
"FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D"
"670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C"
"180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718"
"3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D"
"04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D"
"B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226"
"1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C"
"BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC"
"E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26"
"99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB"
"04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2"
"233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127"
"D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492"
"36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406"
"AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918"
"DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151"
"2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03"
"F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F"
"BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA"
"CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B"
"B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632"
"387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E"
"6DCC4024FFFFFFFFFFFFFFFF",
+ "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B"
+ "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9"
+ "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6"
+ "49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8"
+ "FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D"
+ "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C"
+ "180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718"
+ "3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D"
+ "04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D"
+ "B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226"
+ "1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C"
+ "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC"
+ "E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26"
+ "99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB"
+ "04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2"
+ "233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127"
+ "D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492"
+ "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406"
+ "AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918"
+ "DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151"
+ "2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03"
+ "F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F"
+ "BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA"
+ "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B"
+ "B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632"
+ "387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E"
+ "6DCC4024FFFFFFFFFFFFFFFF",
base=16,
),
"generator": 2,
@ -130,48 +130,48 @@ primes = {
18: {
"prime": int(
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"
"29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
"EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
"E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
"EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
"C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
"83655D23DCA3AD961C62F356208552BB9ED529077096966D"
"670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"
"E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"
"DE2BCBF6955817183995497CEA956AE515D2261898FA0510"
"15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64"
"ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7"
"ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B"
"F12FFA06D98A0864D87602733EC86A64521F2B18177B200C"
"BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31"
"43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7"
"88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA"
"2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6"
"287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED"
"1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9"
"93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492"
"36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD"
"F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831"
"179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B"
"DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF"
"5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6"
"D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3"
"23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA"
"CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328"
"06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C"
"DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE"
"12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4"
"38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300"
"741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568"
"3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9"
"22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B"
"4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A"
"062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36"
"4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1"
"B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92"
"4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47"
"9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71"
"60C980DD98EDD3DFFFFFFFFFFFFFFFFF",
+ "29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
+ "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
+ "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
+ "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
+ "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
+ "83655D23DCA3AD961C62F356208552BB9ED529077096966D"
+ "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"
+ "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"
+ "DE2BCBF6955817183995497CEA956AE515D2261898FA0510"
+ "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64"
+ "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7"
+ "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B"
+ "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C"
+ "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31"
+ "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7"
+ "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA"
+ "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6"
+ "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED"
+ "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9"
+ "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492"
+ "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD"
+ "F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831"
+ "179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B"
+ "DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF"
+ "5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6"
+ "D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3"
+ "23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA"
+ "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328"
+ "06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C"
+ "DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE"
+ "12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4"
+ "38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300"
+ "741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568"
+ "3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9"
+ "22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B"
+ "4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A"
+ "062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36"
+ "4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1"
+ "B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92"
+ "4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47"
+ "9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71"
+ "60C980DD98EDD3DFFFFFFFFFFFFFFFFF",
base=16,
),
"generator": 2,

View File

@ -87,20 +87,22 @@ def _validator(
# Checks if there are 3 unique rotors
if (unique_rotsel := len(set(rotsel))) < 3:
msg = f"Please use 3 unique rotors (not {unique_rotsel})"
raise Exception(msg)
raise Exception(f"Please use 3 unique rotors (not {unique_rotsel})")
# Checks if rotor positions are valid
rotorpos1, rotorpos2, rotorpos3 = rotpos
if not 0 < rotorpos1 <= len(abc):
msg = f"First rotor position is not within range of 1..26 ({rotorpos1}"
raise ValueError(msg)
raise ValueError(
"First rotor position is not within range of 1..26 (" f"{rotorpos1}"
)
if not 0 < rotorpos2 <= len(abc):
msg = f"Second rotor position is not within range of 1..26 ({rotorpos2})"
raise ValueError(msg)
raise ValueError(
"Second rotor position is not within range of 1..26 (" f"{rotorpos2})"
)
if not 0 < rotorpos3 <= len(abc):
msg = f"Third rotor position is not within range of 1..26 ({rotorpos3})"
raise ValueError(msg)
raise ValueError(
"Third rotor position is not within range of 1..26 (" f"{rotorpos3})"
)
# Validates string and returns dict
pbdict = _plugboard(pb)
@ -128,11 +130,9 @@ def _plugboard(pbstring: str) -> dict[str, str]:
# a) is type string
# b) has even length (so pairs can be made)
if not isinstance(pbstring, str):
msg = f"Plugboard setting isn't type string ({type(pbstring)})"
raise TypeError(msg)
raise TypeError(f"Plugboard setting isn't type string ({type(pbstring)})")
elif len(pbstring) % 2 != 0:
msg = f"Odd number of symbols ({len(pbstring)})"
raise Exception(msg)
raise Exception(f"Odd number of symbols ({len(pbstring)})")
elif pbstring == "":
return {}
@ -142,11 +142,9 @@ def _plugboard(pbstring: str) -> dict[str, str]:
tmppbl = set()
for i in pbstring:
if i not in abc:
msg = f"'{i}' not in list of symbols"
raise Exception(msg)
raise Exception(f"'{i}' not in list of symbols")
elif i in tmppbl:
msg = f"Duplicate symbol ({i})"
raise Exception(msg)
raise Exception(f"Duplicate symbol ({i})")
else:
tmppbl.add(i)
del tmppbl

View File

@ -104,11 +104,10 @@ class HillCipher:
req_l = len(self.key_string)
if greatest_common_divisor(det, len(self.key_string)) != 1:
msg = (
f"determinant modular {req_l} of encryption key({det}) "
f"is not co prime w.r.t {req_l}.\nTry another key."
raise ValueError(
f"determinant modular {req_l} of encryption key({det}) is not co prime "
f"w.r.t {req_l}.\nTry another key."
)
raise ValueError(msg)
def process_text(self, text: str) -> str:
"""

View File

@ -1,11 +1,7 @@
from string import ascii_uppercase
def mixed_keyword(
keyword: str, plaintext: str, verbose: bool = False, alphabet: str = ascii_uppercase
) -> str:
def mixed_keyword(key: str = "college", pt: str = "UNIVERSITY") -> str:
"""
For keyword: hello
For key:hello
H E L O
A B C D
@ -16,60 +12,57 @@ def mixed_keyword(
Y Z
and map vertically
>>> mixed_keyword("college", "UNIVERSITY", True) # doctest: +NORMALIZE_WHITESPACE
>>> mixed_keyword("college", "UNIVERSITY") # doctest: +NORMALIZE_WHITESPACE
{'A': 'C', 'B': 'A', 'C': 'I', 'D': 'P', 'E': 'U', 'F': 'Z', 'G': 'O', 'H': 'B',
'I': 'J', 'J': 'Q', 'K': 'V', 'L': 'L', 'M': 'D', 'N': 'K', 'O': 'R', 'P': 'W',
'Q': 'E', 'R': 'F', 'S': 'M', 'T': 'S', 'U': 'X', 'V': 'G', 'W': 'H', 'X': 'N',
'Y': 'T', 'Z': 'Y'}
'XKJGUFMJST'
>>> mixed_keyword("college", "UNIVERSITY", False) # doctest: +NORMALIZE_WHITESPACE
'XKJGUFMJST'
"""
keyword = keyword.upper()
plaintext = plaintext.upper()
alphabet_set = set(alphabet)
# create a list of unique characters in the keyword - their order matters
# it determines how we will map plaintext characters to the ciphertext
unique_chars = []
for char in keyword:
if char in alphabet_set and char not in unique_chars:
unique_chars.append(char)
# the number of those unique characters will determine the number of rows
num_unique_chars_in_keyword = len(unique_chars)
# create a shifted version of the alphabet
shifted_alphabet = unique_chars + [
char for char in alphabet if char not in unique_chars
]
# create a modified alphabet by splitting the shifted alphabet into rows
modified_alphabet = [
shifted_alphabet[k : k + num_unique_chars_in_keyword]
for k in range(0, 26, num_unique_chars_in_keyword)
]
# map the alphabet characters to the modified alphabet characters
# going 'vertically' through the modified alphabet - consider columns first
mapping = {}
letter_index = 0
for column in range(num_unique_chars_in_keyword):
for row in modified_alphabet:
# if current row (the last one) is too short, break out of loop
if len(row) <= column:
key = key.upper()
pt = pt.upper()
temp = []
for i in key:
if i not in temp:
temp.append(i)
len_temp = len(temp)
# print(temp)
alpha = []
modalpha = []
for j in range(65, 91):
t = chr(j)
alpha.append(t)
if t not in temp:
temp.append(t)
# print(temp)
r = int(26 / 4)
# print(r)
k = 0
for _ in range(r):
s = []
for _ in range(len_temp):
s.append(temp[k])
if k >= 25:
break
# map current letter to letter in modified alphabet
mapping[alphabet[letter_index]] = row[column]
letter_index += 1
if verbose:
print(mapping)
# create the encrypted text by mapping the plaintext to the modified alphabet
return "".join(mapping[char] if char in mapping else char for char in plaintext)
k += 1
modalpha.append(s)
# print(modalpha)
d = {}
j = 0
k = 0
for j in range(len_temp):
for m in modalpha:
if not len(m) - 1 >= j:
break
d[alpha[k]] = m[j]
if not k < 25:
break
k += 1
print(d)
cypher = ""
for i in pt:
cypher += d[i]
return cypher
if __name__ == "__main__":
# example use
print(mixed_keyword("college", "UNIVERSITY"))
print(mixed_keyword("college", "UNIVERSITY"))

View File

@ -76,11 +76,10 @@ def encrypt_and_write_to_file(
key_size, n, e = read_key_file(key_filename)
if key_size < block_size * 8:
sys.exit(
"ERROR: Block size is {} bits and key size is {} bits. The RSA cipher "
"ERROR: Block size is %s bits and key size is %s bits. The RSA cipher "
"requires the block size to be equal to or greater than the key size. "
"Either decrease the block size or use different keys.".format(
block_size * 8, key_size
)
"Either decrease the block size or use different keys."
% (block_size * 8, key_size)
)
encrypted_blocks = [str(i) for i in encrypt_message(message, (n, e), block_size)]
@ -102,11 +101,10 @@ def read_from_file_and_decrypt(message_filename: str, key_filename: str) -> str:
if key_size < block_size * 8:
sys.exit(
"ERROR: Block size is {} bits and key size is {} bits. The RSA cipher "
"ERROR: Block size is %s bits and key size is %s bits. The RSA cipher "
"requires the block size to be equal to or greater than the key size. "
"Did you specify the correct key file and encrypted file?".format(
block_size * 8, key_size
)
"Did you specify the correct key file and encrypted file?"
% (block_size * 8, key_size)
)
encrypted_blocks = []

View File

@ -150,7 +150,7 @@ def reverse_bwt(bwt_string: str, idx_original_string: int) -> str:
raise ValueError("The parameter idx_original_string must not be lower than 0.")
if idx_original_string >= len(bwt_string):
raise ValueError(
"The parameter idx_original_string must be lower than len(bwt_string)."
"The parameter idx_original_string must be lower than" " len(bwt_string)."
)
ordered_rotations = [""] * len(bwt_string)

View File

@ -77,17 +77,15 @@ def length_conversion(value: float, from_type: str, to_type: str) -> float:
to_sanitized = UNIT_SYMBOL.get(to_sanitized, to_sanitized)
if from_sanitized not in METRIC_CONVERSION:
msg = (
raise ValueError(
f"Invalid 'from_type' value: {from_type!r}.\n"
f"Conversion abbreviations are: {', '.join(METRIC_CONVERSION)}"
)
raise ValueError(msg)
if to_sanitized not in METRIC_CONVERSION:
msg = (
raise ValueError(
f"Invalid 'to_type' value: {to_type!r}.\n"
f"Conversion abbreviations are: {', '.join(METRIC_CONVERSION)}"
)
raise ValueError(msg)
from_exponent = METRIC_CONVERSION[from_sanitized]
to_exponent = METRIC_CONVERSION[to_sanitized]
exponent = 1

View File

@ -1,114 +0,0 @@
"""
Conversion of energy units.
Available units: joule, kilojoule, megajoule, gigajoule,\
wattsecond, watthour, kilowatthour, newtonmeter, calorie_nutr,\
kilocalorie_nutr, electronvolt, britishthermalunit_it, footpound
USAGE :
-> Import this file into their respective project.
-> Use the function energy_conversion() for conversion of energy units.
-> Parameters :
-> from_type : From which type you want to convert
-> to_type : To which type you want to convert
-> value : the value which you want to convert
REFERENCES :
-> Wikipedia reference: https://en.wikipedia.org/wiki/Units_of_energy
-> Wikipedia reference: https://en.wikipedia.org/wiki/Joule
-> Wikipedia reference: https://en.wikipedia.org/wiki/Kilowatt-hour
-> Wikipedia reference: https://en.wikipedia.org/wiki/Newton-metre
-> Wikipedia reference: https://en.wikipedia.org/wiki/Calorie
-> Wikipedia reference: https://en.wikipedia.org/wiki/Electronvolt
-> Wikipedia reference: https://en.wikipedia.org/wiki/British_thermal_unit
-> Wikipedia reference: https://en.wikipedia.org/wiki/Foot-pound_(energy)
-> Unit converter reference: https://www.unitconverters.net/energy-converter.html
"""
ENERGY_CONVERSION: dict[str, float] = {
"joule": 1.0,
"kilojoule": 1_000,
"megajoule": 1_000_000,
"gigajoule": 1_000_000_000,
"wattsecond": 1.0,
"watthour": 3_600,
"kilowatthour": 3_600_000,
"newtonmeter": 1.0,
"calorie_nutr": 4_186.8,
"kilocalorie_nutr": 4_186_800.00,
"electronvolt": 1.602_176_634e-19,
"britishthermalunit_it": 1_055.055_85,
"footpound": 1.355_818,
}
def energy_conversion(from_type: str, to_type: str, value: float) -> float:
"""
Conversion of energy units.
>>> energy_conversion("joule", "joule", 1)
1.0
>>> energy_conversion("joule", "kilojoule", 1)
0.001
>>> energy_conversion("joule", "megajoule", 1)
1e-06
>>> energy_conversion("joule", "gigajoule", 1)
1e-09
>>> energy_conversion("joule", "wattsecond", 1)
1.0
>>> energy_conversion("joule", "watthour", 1)
0.0002777777777777778
>>> energy_conversion("joule", "kilowatthour", 1)
2.7777777777777776e-07
>>> energy_conversion("joule", "newtonmeter", 1)
1.0
>>> energy_conversion("joule", "calorie_nutr", 1)
0.00023884589662749592
>>> energy_conversion("joule", "kilocalorie_nutr", 1)
2.388458966274959e-07
>>> energy_conversion("joule", "electronvolt", 1)
6.241509074460763e+18
>>> energy_conversion("joule", "britishthermalunit_it", 1)
0.0009478171226670134
>>> energy_conversion("joule", "footpound", 1)
0.7375621211696556
>>> energy_conversion("joule", "megajoule", 1000)
0.001
>>> energy_conversion("calorie_nutr", "kilocalorie_nutr", 1000)
1.0
>>> energy_conversion("kilowatthour", "joule", 10)
36000000.0
>>> energy_conversion("britishthermalunit_it", "footpound", 1)
778.1692306784539
>>> energy_conversion("watthour", "joule", "a") # doctest: +ELLIPSIS
Traceback (most recent call last):
...
TypeError: unsupported operand type(s) for /: 'str' and 'float'
>>> energy_conversion("wrongunit", "joule", 1) # doctest: +ELLIPSIS
Traceback (most recent call last):
...
ValueError: Incorrect 'from_type' or 'to_type' value: 'wrongunit', 'joule'
Valid values are: joule, ... footpound
>>> energy_conversion("joule", "wrongunit", 1) # doctest: +ELLIPSIS
Traceback (most recent call last):
...
ValueError: Incorrect 'from_type' or 'to_type' value: 'joule', 'wrongunit'
Valid values are: joule, ... footpound
>>> energy_conversion("123", "abc", 1) # doctest: +ELLIPSIS
Traceback (most recent call last):
...
ValueError: Incorrect 'from_type' or 'to_type' value: '123', 'abc'
Valid values are: joule, ... footpound
"""
if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION:
msg = (
f"Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n"
f"Valid values are: {', '.join(ENERGY_CONVERSION)}"
)
raise ValueError(msg)
return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type]
if __name__ == "__main__":
import doctest
doctest.testmod()

View File

@ -22,13 +22,9 @@ REFERENCES :
-> Wikipedia reference: https://en.wikipedia.org/wiki/Millimeter
"""
from typing import NamedTuple
class FromTo(NamedTuple):
from_factor: float
to_factor: float
from collections import namedtuple
from_to = namedtuple("from_to", "from_ to")
TYPE_CONVERSION = {
"millimeter": "mm",
@ -44,14 +40,14 @@ TYPE_CONVERSION = {
}
METRIC_CONVERSION = {
"mm": FromTo(0.001, 1000),
"cm": FromTo(0.01, 100),
"m": FromTo(1, 1),
"km": FromTo(1000, 0.001),
"in": FromTo(0.0254, 39.3701),
"ft": FromTo(0.3048, 3.28084),
"yd": FromTo(0.9144, 1.09361),
"mi": FromTo(1609.34, 0.000621371),
"mm": from_to(0.001, 1000),
"cm": from_to(0.01, 100),
"m": from_to(1, 1),
"km": from_to(1000, 0.001),
"in": from_to(0.0254, 39.3701),
"ft": from_to(0.3048, 3.28084),
"yd": from_to(0.9144, 1.09361),
"mi": from_to(1609.34, 0.000621371),
}
@ -108,22 +104,16 @@ def length_conversion(value: float, from_type: str, to_type: str) -> float:
new_to = to_type.lower().rstrip("s")
new_to = TYPE_CONVERSION.get(new_to, new_to)
if new_from not in METRIC_CONVERSION:
msg = (
raise ValueError(
f"Invalid 'from_type' value: {from_type!r}.\n"
f"Conversion abbreviations are: {', '.join(METRIC_CONVERSION)}"
)
raise ValueError(msg)
if new_to not in METRIC_CONVERSION:
msg = (
raise ValueError(
f"Invalid 'to_type' value: {to_type!r}.\n"
f"Conversion abbreviations are: {', '.join(METRIC_CONVERSION)}"
)
raise ValueError(msg)
return (
value
* METRIC_CONVERSION[new_from].from_factor
* METRIC_CONVERSION[new_to].to_factor
)
return value * METRIC_CONVERSION[new_from].from_ * METRIC_CONVERSION[new_to].to
if __name__ == "__main__":

View File

@ -96,7 +96,7 @@ def add_si_prefix(value: float) -> str:
for name_prefix, value_prefix in prefixes.items():
numerical_part = value / (10**value_prefix)
if numerical_part > 1:
return f"{numerical_part!s} {name_prefix}"
return f"{str(numerical_part)} {name_prefix}"
return str(value)
@ -111,7 +111,7 @@ def add_binary_prefix(value: float) -> str:
for prefix in BinaryUnit:
numerical_part = value / (2**prefix.value)
if numerical_part > 1:
return f"{numerical_part!s} {prefix.name}"
return f"{str(numerical_part)} {prefix.name}"
return str(value)

View File

@ -19,23 +19,19 @@ REFERENCES :
-> https://www.unitconverters.net/pressure-converter.html
"""
from typing import NamedTuple
class FromTo(NamedTuple):
from_factor: float
to_factor: float
from collections import namedtuple
from_to = namedtuple("from_to", "from_ to")
PRESSURE_CONVERSION = {
"atm": FromTo(1, 1),
"pascal": FromTo(0.0000098, 101325),
"bar": FromTo(0.986923, 1.01325),
"kilopascal": FromTo(0.00986923, 101.325),
"megapascal": FromTo(9.86923, 0.101325),
"psi": FromTo(0.068046, 14.6959),
"inHg": FromTo(0.0334211, 29.9213),
"torr": FromTo(0.00131579, 760),
"atm": from_to(1, 1),
"pascal": from_to(0.0000098, 101325),
"bar": from_to(0.986923, 1.01325),
"kilopascal": from_to(0.00986923, 101.325),
"megapascal": from_to(9.86923, 0.101325),
"psi": from_to(0.068046, 14.6959),
"inHg": from_to(0.0334211, 29.9213),
"torr": from_to(0.00131579, 760),
}
@ -75,9 +71,7 @@ def pressure_conversion(value: float, from_type: str, to_type: str) -> float:
+ ", ".join(PRESSURE_CONVERSION)
)
return (
value
* PRESSURE_CONVERSION[from_type].from_factor
* PRESSURE_CONVERSION[to_type].to_factor
value * PRESSURE_CONVERSION[from_type].from_ * PRESSURE_CONVERSION[to_type].to
)

View File

@ -121,8 +121,8 @@ def rgb_to_hsv(red: int, green: int, blue: int) -> list[float]:
float_red = red / 255
float_green = green / 255
float_blue = blue / 255
value = max(float_red, float_green, float_blue)
chroma = value - min(float_red, float_green, float_blue)
value = max(max(float_red, float_green), float_blue)
chroma = value - min(min(float_red, float_green), float_blue)
saturation = 0 if value == 0 else chroma / value
if chroma == 0:

View File

@ -57,11 +57,10 @@ def convert_speed(speed: float, unit_from: str, unit_to: str) -> float:
115.078
"""
if unit_to not in speed_chart or unit_from not in speed_chart_inverse:
msg = (
raise ValueError(
f"Incorrect 'from_type' or 'to_type' value: {unit_from!r}, {unit_to!r}\n"
f"Valid values are: {', '.join(speed_chart_inverse)}"
)
raise ValueError(msg)
return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to], 3)

View File

@ -18,39 +18,35 @@ REFERENCES :
-> Wikipedia reference: https://en.wikipedia.org/wiki/Cup_(unit)
"""
from typing import NamedTuple
class FromTo(NamedTuple):
from_factor: float
to_factor: float
from collections import namedtuple
from_to = namedtuple("from_to", "from_ to")
METRIC_CONVERSION = {
"cubic meter": FromTo(1, 1),
"litre": FromTo(0.001, 1000),
"kilolitre": FromTo(1, 1),
"gallon": FromTo(0.00454, 264.172),
"cubic yard": FromTo(0.76455, 1.30795),
"cubic foot": FromTo(0.028, 35.3147),
"cup": FromTo(0.000236588, 4226.75),
"cubicmeter": from_to(1, 1),
"litre": from_to(0.001, 1000),
"kilolitre": from_to(1, 1),
"gallon": from_to(0.00454, 264.172),
"cubicyard": from_to(0.76455, 1.30795),
"cubicfoot": from_to(0.028, 35.3147),
"cup": from_to(0.000236588, 4226.75),
}
def volume_conversion(value: float, from_type: str, to_type: str) -> float:
"""
Conversion between volume units.
>>> volume_conversion(4, "cubic meter", "litre")
>>> volume_conversion(4, "cubicmeter", "litre")
4000
>>> volume_conversion(1, "litre", "gallon")
0.264172
>>> volume_conversion(1, "kilolitre", "cubic meter")
>>> volume_conversion(1, "kilolitre", "cubicmeter")
1
>>> volume_conversion(3, "gallon", "cubic yard")
>>> volume_conversion(3, "gallon", "cubicyard")
0.017814279
>>> volume_conversion(2, "cubic yard", "litre")
>>> volume_conversion(2, "cubicyard", "litre")
1529.1
>>> volume_conversion(4, "cubic foot", "cup")
>>> volume_conversion(4, "cubicfoot", "cup")
473.396
>>> volume_conversion(1, "cup", "kilolitre")
0.000236588
@ -58,7 +54,7 @@ def volume_conversion(value: float, from_type: str, to_type: str) -> float:
Traceback (most recent call last):
...
ValueError: Invalid 'from_type' value: 'wrongUnit' Supported values are:
cubic meter, litre, kilolitre, gallon, cubic yard, cubic foot, cup
cubicmeter, litre, kilolitre, gallon, cubicyard, cubicfoot, cup
"""
if from_type not in METRIC_CONVERSION:
raise ValueError(
@ -70,11 +66,7 @@ def volume_conversion(value: float, from_type: str, to_type: str) -> float:
f"Invalid 'to_type' value: {to_type!r}. Supported values are:\n"
+ ", ".join(METRIC_CONVERSION)
)
return (
value
* METRIC_CONVERSION[from_type].from_factor
* METRIC_CONVERSION[to_type].to_factor
)
return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to
if __name__ == "__main__":

View File

@ -299,11 +299,10 @@ def weight_conversion(from_type: str, to_type: str, value: float) -> float:
1.999999998903455
"""
if to_type not in KILOGRAM_CHART or from_type not in WEIGHT_TYPE_CHART:
msg = (
raise ValueError(
f"Invalid 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n"
f"Supported values are: {', '.join(WEIGHT_TYPE_CHART)}"
)
raise ValueError(msg)
return value * KILOGRAM_CHART[to_type] * WEIGHT_TYPE_CHART[from_type]

View File

@ -1,6 +1,7 @@
def permute(nums: list[int]) -> list[list[int]]:
"""
Return all permutations.
>>> from itertools import permutations
>>> numbers= [1,2,3]
>>> all(list(nums) in permute(numbers) for nums in permutations(numbers))
@ -19,32 +20,7 @@ def permute(nums: list[int]) -> list[list[int]]:
return result
def permute2(nums):
"""
Return all permutations of the given list.
>>> permute2([1, 2, 3])
[[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 2, 1], [3, 1, 2]]
"""
def backtrack(start):
if start == len(nums) - 1:
output.append(nums[:])
else:
for i in range(start, len(nums)):
nums[start], nums[i] = nums[i], nums[start]
backtrack(start + 1)
nums[start], nums[i] = nums[i], nums[start] # backtrack
output = []
backtrack(0)
return output
if __name__ == "__main__":
import doctest
# use res to print the data in permute2 function
res = permute2([1, 2, 3])
print(res)
doctest.testmod()

View File

@ -1,98 +0,0 @@
"""
Calculate the Product Sum from a Special Array.
reference: https://dev.to/sfrasica/algorithms-product-sum-from-an-array-dc6
Python doctests can be run with the following command:
python -m doctest -v product_sum.py
Calculate the product sum of a "special" array which can contain integers or nested
arrays. The product sum is obtained by adding all elements and multiplying by their
respective depths.
For example, in the array [x, y], the product sum is (x + y). In the array [x, [y, z]],
the product sum is x + 2 * (y + z). In the array [x, [y, [z]]],
the product sum is x + 2 * (y + 3z).
Example Input:
[5, 2, [-7, 1], 3, [6, [-13, 8], 4]]
Output: 12
"""
def product_sum(arr: list[int | list], depth: int) -> int:
"""
Recursively calculates the product sum of an array.
The product sum of an array is defined as the sum of its elements multiplied by
their respective depths. If an element is a list, its product sum is calculated
recursively by multiplying the sum of its elements with its depth plus one.
Args:
arr: The array of integers and nested lists.
depth: The current depth level.
Returns:
int: The product sum of the array.
Examples:
>>> product_sum([1, 2, 3], 1)
6
>>> product_sum([-1, 2, [-3, 4]], 2)
8
>>> product_sum([1, 2, 3], -1)
-6
>>> product_sum([1, 2, 3], 0)
0
>>> product_sum([1, 2, 3], 7)
42
>>> product_sum((1, 2, 3), 7)
42
>>> product_sum({1, 2, 3}, 7)
42
>>> product_sum([1, -1], 1)
0
>>> product_sum([1, -2], 1)
-1
>>> product_sum([-3.5, [1, [0.5]]], 1)
1.5
"""
total_sum = 0
for ele in arr:
total_sum += product_sum(ele, depth + 1) if isinstance(ele, list) else ele
return total_sum * depth
def product_sum_array(array: list[int | list]) -> int:
"""
Calculates the product sum of an array.
Args:
array (List[Union[int, List]]): The array of integers and nested lists.
Returns:
int: The product sum of the array.
Examples:
>>> product_sum_array([1, 2, 3])
6
>>> product_sum_array([1, [2, 3]])
11
>>> product_sum_array([1, [2, [3, 4]]])
47
>>> product_sum_array([0])
0
>>> product_sum_array([-3.5, [1, [0.5]]])
1.5
>>> product_sum_array([1, -2])
-1
"""
return product_sum(array, 1)
if __name__ == "__main__":
import doctest
doctest.testmod()

View File

@ -78,8 +78,10 @@ class Node:
return pformat({f"{self.value}": (self.left, self.right)}, indent=1)
@property
def is_right(self):
return self.parent and self is self.parent.right
def is_right(self) -> bool:
if self.parent and self.parent.right:
return self == self.parent.right
return False
class BinarySearchTree:
@ -96,12 +98,12 @@ class BinarySearchTree:
if new_children is not None: # reset its kids
new_children.parent = node.parent
if node.parent is not None: # reset its parent
if node.is_right: # If it is the right child
if node.is_right: # If it is the right children
node.parent.right = new_children
else:
node.parent.left = new_children
else:
self.root = new_children
self.root = None
def empty(self) -> bool:
return self.root is None

View File

@ -77,8 +77,7 @@ class BinarySearchTree:
elif label > node.label:
node.right = self._put(node.right, label, node)
else:
msg = f"Node with label {label} already exists"
raise Exception(msg)
raise Exception(f"Node with label {label} already exists")
return node
@ -101,8 +100,7 @@ class BinarySearchTree:
def _search(self, node: Node | None, label: int) -> Node:
if node is None:
msg = f"Node with label {label} does not exist"
raise Exception(msg)
raise Exception(f"Node with label {label} does not exist")
else:
if label < node.label:
node = self._search(node.left, label)

View File

@ -31,8 +31,7 @@ def binary_tree_mirror(binary_tree: dict, root: int = 1) -> dict:
if not binary_tree:
raise ValueError("binary tree cannot be empty")
if root not in binary_tree:
msg = f"root {root} is not present in the binary_tree"
raise ValueError(msg)
raise ValueError(f"root {root} is not present in the binary_tree")
binary_tree_mirror_dictionary = dict(binary_tree)
binary_tree_mirror_dict(binary_tree_mirror_dictionary, root)
return binary_tree_mirror_dictionary

View File

@ -58,19 +58,6 @@ def inorder(root: Node | None) -> list[int]:
return [*inorder(root.left), root.data, *inorder(root.right)] if root else []
def reverse_inorder(root: Node | None) -> list[int]:
"""
Reverse in-order traversal visits right subtree, root node, left subtree.
>>> reverse_inorder(make_tree())
[3, 1, 5, 2, 4]
"""
return (
[*reverse_inorder(root.right), root.data, *reverse_inorder(root.left)]
if root
else []
)
def height(root: Node | None) -> int:
"""
Recursive function for calculating the height of the binary tree.
@ -174,12 +161,15 @@ def zigzag(root: Node | None) -> Sequence[Node | None] | list[Any]:
def main() -> None: # Main function for testing.
# Create binary tree.
"""
Create binary tree.
"""
root = make_tree()
"""
All Traversals of the binary are as follows:
"""
# All Traversals of the binary are as follows:
print(f"In-order Traversal: {inorder(root)}")
print(f"Reverse In-order Traversal: {reverse_inorder(root)}")
print(f"Pre-order Traversal: {preorder(root)}")
print(f"Post-order Traversal: {postorder(root)}", "\n")

View File

@ -39,8 +39,8 @@ Space: O(1)
from __future__ import annotations
from collections import namedtuple
from dataclasses import dataclass
from typing import NamedTuple
@dataclass
@ -50,9 +50,7 @@ class TreeNode:
right: TreeNode | None = None
class CoinsDistribResult(NamedTuple):
moves: int
excess: int
CoinsDistribResult = namedtuple("CoinsDistribResult", "moves excess")
def distribute_coins(root: TreeNode | None) -> int:
@ -81,7 +79,7 @@ def distribute_coins(root: TreeNode | None) -> int:
# Validation
def count_nodes(node: TreeNode | None) -> int:
"""
>>> count_nodes(None)
>>> count_nodes(None):
0
"""
if node is None:
@ -91,7 +89,7 @@ def distribute_coins(root: TreeNode | None) -> int:
def count_coins(node: TreeNode | None) -> int:
"""
>>> count_coins(None)
>>> count_coins(None):
0
"""
if node is None:

View File

@ -152,7 +152,7 @@ class RedBlackTree:
self.grandparent.color = 1
self.grandparent._insert_repair()
def remove(self, label: int) -> RedBlackTree: # noqa: PLR0912
def remove(self, label: int) -> RedBlackTree:
"""Remove label from this tree."""
if self.label == label:
if self.left and self.right:

View File

@ -7,8 +7,7 @@ class SegmentTree:
self.st = [0] * (
4 * self.N
) # approximate the overall size of segment tree with array N
if self.N:
self.build(1, 0, self.N - 1)
self.build(1, 0, self.N - 1)
def left(self, idx):
return idx * 2

View File

@ -56,8 +56,7 @@ def find_python_set(node: Node) -> set:
for s in sets:
if node.data in s:
return s
msg = f"{node.data} is not in {sets}"
raise ValueError(msg)
raise ValueError(f"{node.data} is not in {sets}")
def test_disjoint_set() -> None:

View File

@ -1,28 +1,9 @@
from __future__ import annotations
from abc import abstractmethod
from collections.abc import Iterable
from typing import Generic, Protocol, TypeVar
class Comparable(Protocol):
@abstractmethod
def __lt__(self: T, other: T) -> bool:
pass
@abstractmethod
def __gt__(self: T, other: T) -> bool:
pass
@abstractmethod
def __eq__(self: T, other: object) -> bool:
pass
T = TypeVar("T", bound=Comparable)
class Heap(Generic[T]):
class Heap:
"""A Max Heap Implementation
>>> unsorted = [103, 9, 1, 7, 11, 15, 25, 201, 209, 107, 5]
@ -46,7 +27,7 @@ class Heap(Generic[T]):
"""
def __init__(self) -> None:
self.h: list[T] = []
self.h: list[float] = []
self.heap_size: int = 0
def __repr__(self) -> str:
@ -98,7 +79,7 @@ class Heap(Generic[T]):
# fix the subsequent violation recursively if any
self.max_heapify(violation)
def build_max_heap(self, collection: Iterable[T]) -> None:
def build_max_heap(self, collection: Iterable[float]) -> None:
"""build max heap from an unsorted array"""
self.h = list(collection)
self.heap_size = len(self.h)
@ -107,7 +88,7 @@ class Heap(Generic[T]):
for i in range(self.heap_size // 2 - 1, -1, -1):
self.max_heapify(i)
def extract_max(self) -> T:
def extract_max(self) -> float:
"""get and remove max from heap"""
if self.heap_size >= 2:
me = self.h[0]
@ -121,7 +102,7 @@ class Heap(Generic[T]):
else:
raise Exception("Empty heap")
def insert(self, value: T) -> None:
def insert(self, value: float) -> None:
"""insert a new value into the max heap"""
self.h.append(value)
idx = (self.heap_size - 1) // 2
@ -163,7 +144,7 @@ if __name__ == "__main__":
]:
print(f"unsorted array: {unsorted}")
heap: Heap[int] = Heap()
heap = Heap()
heap.build_max_heap(unsorted)
print(f"after build heap: {heap}")

View File

@ -94,25 +94,25 @@ def test_circular_linked_list() -> None:
try:
circular_linked_list.delete_front()
raise AssertionError # This should not happen
raise AssertionError() # This should not happen
except IndexError:
assert True # This should happen
try:
circular_linked_list.delete_tail()
raise AssertionError # This should not happen
raise AssertionError() # This should not happen
except IndexError:
assert True # This should happen
try:
circular_linked_list.delete_nth(-1)
raise AssertionError
raise AssertionError()
except IndexError:
assert True
try:
circular_linked_list.delete_nth(0)
raise AssertionError
raise AssertionError()
except IndexError:
assert True

View File

@ -198,13 +198,13 @@ def test_doubly_linked_list() -> None:
try:
linked_list.delete_head()
raise AssertionError # This should not happen.
raise AssertionError() # This should not happen.
except IndexError:
assert True # This should happen.
try:
linked_list.delete_tail()
raise AssertionError # This should not happen.
raise AssertionError() # This should not happen.
except IndexError:
assert True # This should happen.

View File

@ -353,13 +353,13 @@ def test_singly_linked_list() -> None:
try:
linked_list.delete_head()
raise AssertionError # This should not happen.
raise AssertionError() # This should not happen.
except IndexError:
assert True # This should happen.
try:
linked_list.delete_tail()
raise AssertionError # This should not happen.
raise AssertionError() # This should not happen.
except IndexError:
assert True # This should happen.

View File

@ -32,7 +32,7 @@ class Deque:
the number of nodes
"""
__slots__ = ("_front", "_back", "_len")
__slots__ = ["_front", "_back", "_len"]
@dataclass
class _Node:
@ -54,7 +54,7 @@ class Deque:
the current node of the iteration.
"""
__slots__ = ("_cur",)
__slots__ = ["_cur"]
def __init__(self, cur: Deque._Node | None) -> None:
self._cur = cur

View File

@ -1,141 +0,0 @@
"""Queue represented by a Python list"""
from collections.abc import Iterable
from typing import Generic, TypeVar
_T = TypeVar("_T")
class QueueByList(Generic[_T]):
def __init__(self, iterable: Iterable[_T] | None = None) -> None:
"""
>>> QueueByList()
Queue(())
>>> QueueByList([10, 20, 30])
Queue((10, 20, 30))
>>> QueueByList((i**2 for i in range(1, 4)))
Queue((1, 4, 9))
"""
self.entries: list[_T] = list(iterable or [])
def __len__(self) -> int:
"""
>>> len(QueueByList())
0
>>> from string import ascii_lowercase
>>> len(QueueByList(ascii_lowercase))
26
>>> queue = QueueByList()
>>> for i in range(1, 11):
... queue.put(i)
>>> len(queue)
10
>>> for i in range(2):
... queue.get()
1
2
>>> len(queue)
8
"""
return len(self.entries)
def __repr__(self) -> str:
"""
>>> queue = QueueByList()
>>> queue
Queue(())
>>> str(queue)
'Queue(())'
>>> queue.put(10)
>>> queue
Queue((10,))
>>> queue.put(20)
>>> queue.put(30)
>>> queue
Queue((10, 20, 30))
"""
return f"Queue({tuple(self.entries)})"
def put(self, item: _T) -> None:
"""Put `item` to the Queue
>>> queue = QueueByList()
>>> queue.put(10)
>>> queue.put(20)
>>> len(queue)
2
>>> queue
Queue((10, 20))
"""
self.entries.append(item)
def get(self) -> _T:
"""
Get `item` from the Queue
>>> queue = QueueByList((10, 20, 30))
>>> queue.get()
10
>>> queue.put(40)
>>> queue.get()
20
>>> queue.get()
30
>>> len(queue)
1
>>> queue.get()
40
>>> queue.get()
Traceback (most recent call last):
...
IndexError: Queue is empty
"""
if not self.entries:
raise IndexError("Queue is empty")
return self.entries.pop(0)
def rotate(self, rotation: int) -> None:
"""Rotate the items of the Queue `rotation` times
>>> queue = QueueByList([10, 20, 30, 40])
>>> queue
Queue((10, 20, 30, 40))
>>> queue.rotate(1)
>>> queue
Queue((20, 30, 40, 10))
>>> queue.rotate(2)
>>> queue
Queue((40, 10, 20, 30))
"""
put = self.entries.append
get = self.entries.pop
for _ in range(rotation):
put(get(0))
def get_front(self) -> _T:
"""Get the front item from the Queue
>>> queue = QueueByList((10, 20, 30))
>>> queue.get_front()
10
>>> queue
Queue((10, 20, 30))
>>> queue.get()
10
>>> queue.get_front()
20
"""
return self.entries[0]
if __name__ == "__main__":
from doctest import testmod
testmod()

View File

@ -0,0 +1,52 @@
"""Queue represented by a Python list"""
class Queue:
def __init__(self):
self.entries = []
self.length = 0
self.front = 0
def __str__(self):
printed = "<" + str(self.entries)[1:-1] + ">"
return printed
"""Enqueues {@code item}
@param item
item to enqueue"""
def put(self, item):
self.entries.append(item)
self.length = self.length + 1
"""Dequeues {@code item}
@requirement: |self.length| > 0
@return dequeued
item that was dequeued"""
def get(self):
self.length = self.length - 1
dequeued = self.entries[self.front]
# self.front-=1
# self.entries = self.entries[self.front:]
self.entries = self.entries[1:]
return dequeued
"""Rotates the queue {@code rotation} times
@param rotation
number of times to rotate queue"""
def rotate(self, rotation):
for _ in range(rotation):
self.put(self.get())
"""Enqueues {@code item}
@return item at front of self.entries"""
def get_front(self):
return self.entries[0]
"""Returns the length of this.entries"""
def size(self):
return self.length

View File

@ -4,26 +4,9 @@ https://en.wikipedia.org/wiki/Reverse_Polish_notation
https://en.wikipedia.org/wiki/Shunting-yard_algorithm
"""
from typing import Literal
from .balanced_parentheses import balanced_parentheses
from .stack import Stack
PRECEDENCES: dict[str, int] = {
"+": 1,
"-": 1,
"*": 2,
"/": 2,
"^": 3,
}
ASSOCIATIVITIES: dict[str, Literal["LR", "RL"]] = {
"+": "LR",
"-": "LR",
"*": "LR",
"/": "LR",
"^": "RL",
}
def precedence(char: str) -> int:
"""
@ -31,15 +14,7 @@ def precedence(char: str) -> int:
order of operation.
https://en.wikipedia.org/wiki/Order_of_operations
"""
return PRECEDENCES.get(char, -1)
def associativity(char: str) -> Literal["LR", "RL"]:
"""
Return the associativity of the operator `char`.
https://en.wikipedia.org/wiki/Operator_associativity
"""
return ASSOCIATIVITIES[char]
return {"+": 1, "-": 1, "*": 2, "/": 2, "^": 3}.get(char, -1)
def infix_to_postfix(expression_str: str) -> str:
@ -60,8 +35,6 @@ def infix_to_postfix(expression_str: str) -> str:
'a b c * + d e * f + g * +'
>>> infix_to_postfix("x^y/(5*z)+2")
'x y ^ 5 z * / 2 +'
>>> infix_to_postfix("2^3^2")
'2 3 2 ^ ^'
"""
if not balanced_parentheses(expression_str):
raise ValueError("Mismatched parentheses")
@ -77,26 +50,9 @@ def infix_to_postfix(expression_str: str) -> str:
postfix.append(stack.pop())
stack.pop()
else:
while True:
if stack.is_empty():
stack.push(char)
break
char_precedence = precedence(char)
tos_precedence = precedence(stack.peek())
if char_precedence > tos_precedence:
stack.push(char)
break
if char_precedence < tos_precedence:
postfix.append(stack.pop())
continue
# Precedences are equal
if associativity(char) == "RL":
stack.push(char)
break
while not stack.is_empty() and precedence(char) <= precedence(stack.peek()):
postfix.append(stack.pop())
stack.push(char)
while not stack.is_empty():
postfix.append(stack.pop())
return " ".join(postfix)

View File

@ -92,13 +92,13 @@ def test_stack() -> None:
try:
_ = stack.pop()
raise AssertionError # This should not happen
raise AssertionError() # This should not happen
except StackUnderflowError:
assert True # This should happen
try:
_ = stack.peek()
raise AssertionError # This should not happen
raise AssertionError() # This should not happen
except StackUnderflowError:
assert True # This should happen
@ -118,7 +118,7 @@ def test_stack() -> None:
try:
stack.push(200)
raise AssertionError # This should not happen
raise AssertionError() # This should not happen
except StackOverflowError:
assert True # This should happen

View File

@ -54,17 +54,10 @@ class RadixNode:
word (str): word to insert
>>> RadixNode("myprefix").insert("mystring")
>>> root = RadixNode()
>>> root.insert_many(['myprefix', 'myprefixA', 'myprefixAA'])
>>> root.print_tree()
- myprefix (leaf)
-- A (leaf)
--- A (leaf)
"""
# Case 1: If the word is the prefix of the node
# Solution: We set the current node as leaf
if self.prefix == word and not self.is_leaf:
if self.prefix == word:
self.is_leaf = True
# Case 2: The node has no edges that have a prefix to the word
@ -163,7 +156,7 @@ class RadixNode:
del self.nodes[word[0]]
# We merge the current node with its only child
if len(self.nodes) == 1 and not self.is_leaf:
merging_node = next(iter(self.nodes.values()))
merging_node = list(self.nodes.values())[0]
self.is_leaf = merging_node.is_leaf
self.prefix += merging_node.prefix
self.nodes = merging_node.nodes
@ -172,7 +165,7 @@ class RadixNode:
incoming_node.is_leaf = False
# If there is 1 edge, we merge it with its child
else:
merging_node = next(iter(incoming_node.nodes.values()))
merging_node = list(incoming_node.nodes.values())[0]
incoming_node.is_leaf = merging_node.is_leaf
incoming_node.prefix += merging_node.prefix
incoming_node.nodes = merging_node.nodes

View File

@ -21,8 +21,7 @@ class Burkes:
self.max_threshold = int(self.get_greyscale(255, 255, 255))
if not self.min_threshold < threshold < self.max_threshold:
msg = f"Factor value should be from 0 to {self.max_threshold}"
raise ValueError(msg)
raise ValueError(f"Factor value should be from 0 to {self.max_threshold}")
self.input_img = input_img
self.threshold = threshold
@ -39,18 +38,9 @@ class Burkes:
def get_greyscale(cls, blue: int, green: int, red: int) -> float:
"""
>>> Burkes.get_greyscale(3, 4, 5)
4.185
>>> Burkes.get_greyscale(0, 0, 0)
0.0
>>> Burkes.get_greyscale(255, 255, 255)
255.0
3.753
"""
"""
Formula from https://en.wikipedia.org/wiki/HSL_and_HSV
cf Lightness section, and Fig 13c.
We use the first of four possible.
"""
return 0.114 * blue + 0.587 * green + 0.299 * red
return 0.114 * blue + 0.587 * green + 0.2126 * red
def process(self) -> None:
for y in range(self.height):
@ -58,10 +48,10 @@ class Burkes:
greyscale = int(self.get_greyscale(*self.input_img[y][x]))
if self.threshold > greyscale + self.error_table[y][x]:
self.output_img[y][x] = (0, 0, 0)
current_error = greyscale + self.error_table[y][x]
current_error = greyscale + self.error_table[x][y]
else:
self.output_img[y][x] = (255, 255, 255)
current_error = greyscale + self.error_table[y][x] - 255
current_error = greyscale + self.error_table[x][y] - 255
"""
Burkes error propagation (`*` is current pixel):

View File

@ -96,7 +96,7 @@ def test_nearest_neighbour(
def test_local_binary_pattern():
file_path = "digital_image_processing/image_data/lena.jpg"
file_path: str = "digital_image_processing/image_data/lena.jpg"
# Reading the image and converting it to grayscale.
image = imread(file_path, 0)

View File

@ -174,12 +174,12 @@ def _validate_input(points: list[Point] | list[list[float]]) -> list[Point]:
"""
if not hasattr(points, "__iter__"):
msg = f"Expecting an iterable object but got an non-iterable type {points}"
raise ValueError(msg)
raise ValueError(
f"Expecting an iterable object but got an non-iterable type {points}"
)
if not points:
msg = f"Expecting a list of points but got {points}"
raise ValueError(msg)
raise ValueError(f"Expecting a list of points but got {points}")
return _construct_points(points)
@ -266,7 +266,7 @@ def convex_hull_bf(points: list[Point]) -> list[Point]:
points_left_of_ij = points_right_of_ij = False
ij_part_of_convex_hull = True
for k in range(n):
if k not in {i, j}:
if k != i and k != j:
det_k = _det(points[i], points[j], points[k])
if det_k > 0:

View File

@ -1,112 +0,0 @@
"""
The maximum subarray problem is the task of finding the continuous subarray that has the
maximum sum within a given array of numbers. For example, given the array
[-2, 1, -3, 4, -1, 2, 1, -5, 4], the contiguous subarray with the maximum sum is
[4, -1, 2, 1], which has a sum of 6.
This divide-and-conquer algorithm finds the maximum subarray in O(n log n) time.
"""
from __future__ import annotations
import time
from collections.abc import Sequence
from random import randint
from matplotlib import pyplot as plt
def max_subarray(
arr: Sequence[float], low: int, high: int
) -> tuple[int | None, int | None, float]:
"""
Solves the maximum subarray problem using divide and conquer.
:param arr: the given array of numbers
:param low: the start index
:param high: the end index
:return: the start index of the maximum subarray, the end index of the
maximum subarray, and the maximum subarray sum
>>> nums = [-2, 1, -3, 4, -1, 2, 1, -5, 4]
>>> max_subarray(nums, 0, len(nums) - 1)
(3, 6, 6)
>>> nums = [2, 8, 9]
>>> max_subarray(nums, 0, len(nums) - 1)
(0, 2, 19)
>>> nums = [0, 0]
>>> max_subarray(nums, 0, len(nums) - 1)
(0, 0, 0)
>>> nums = [-1.0, 0.0, 1.0]
>>> max_subarray(nums, 0, len(nums) - 1)
(2, 2, 1.0)
>>> nums = [-2, -3, -1, -4, -6]
>>> max_subarray(nums, 0, len(nums) - 1)
(2, 2, -1)
>>> max_subarray([], 0, 0)
(None, None, 0)
"""
if not arr:
return None, None, 0
if low == high:
return low, high, arr[low]
mid = (low + high) // 2
left_low, left_high, left_sum = max_subarray(arr, low, mid)
right_low, right_high, right_sum = max_subarray(arr, mid + 1, high)
cross_left, cross_right, cross_sum = max_cross_sum(arr, low, mid, high)
if left_sum >= right_sum and left_sum >= cross_sum:
return left_low, left_high, left_sum
elif right_sum >= left_sum and right_sum >= cross_sum:
return right_low, right_high, right_sum
return cross_left, cross_right, cross_sum
def max_cross_sum(
arr: Sequence[float], low: int, mid: int, high: int
) -> tuple[int, int, float]:
left_sum, max_left = float("-inf"), -1
right_sum, max_right = float("-inf"), -1
summ: int | float = 0
for i in range(mid, low - 1, -1):
summ += arr[i]
if summ > left_sum:
left_sum = summ
max_left = i
summ = 0
for i in range(mid + 1, high + 1):
summ += arr[i]
if summ > right_sum:
right_sum = summ
max_right = i
return max_left, max_right, (left_sum + right_sum)
def time_max_subarray(input_size: int) -> float:
arr = [randint(1, input_size) for _ in range(input_size)]
start = time.time()
max_subarray(arr, 0, input_size - 1)
end = time.time()
return end - start
def plot_runtimes() -> None:
input_sizes = [10, 100, 1000, 10000, 50000, 100000, 200000, 300000, 400000, 500000]
runtimes = [time_max_subarray(input_size) for input_size in input_sizes]
print("No of Inputs\t\tTime Taken")
for input_size, runtime in zip(input_sizes, runtimes):
print(input_size, "\t\t", runtime)
plt.plot(input_sizes, runtimes)
plt.xlabel("Number of Inputs")
plt.ylabel("Time taken in seconds")
plt.show()
if __name__ == "__main__":
"""
A random simulation of this algorithm.
"""
from doctest import testmod
testmod()

View File

@ -0,0 +1,78 @@
"""
Given a array of length n, max_subarray_sum() finds
the maximum of sum of contiguous sub-array using divide and conquer method.
Time complexity : O(n log n)
Ref : INTRODUCTION TO ALGORITHMS THIRD EDITION
(section : 4, sub-section : 4.1, page : 70)
"""
def max_sum_from_start(array):
"""This function finds the maximum contiguous sum of array from 0 index
Parameters :
array (list[int]) : given array
Returns :
max_sum (int) : maximum contiguous sum of array from 0 index
"""
array_sum = 0
max_sum = float("-inf")
for num in array:
array_sum += num
if array_sum > max_sum:
max_sum = array_sum
return max_sum
def max_cross_array_sum(array, left, mid, right):
"""This function finds the maximum contiguous sum of left and right arrays
Parameters :
array, left, mid, right (list[int], int, int, int)
Returns :
(int) : maximum of sum of contiguous sum of left and right arrays
"""
max_sum_of_left = max_sum_from_start(array[left : mid + 1][::-1])
max_sum_of_right = max_sum_from_start(array[mid + 1 : right + 1])
return max_sum_of_left + max_sum_of_right
def max_subarray_sum(array, left, right):
"""Maximum contiguous sub-array sum, using divide and conquer method
Parameters :
array, left, right (list[int], int, int) :
given array, current left index and current right index
Returns :
int : maximum of sum of contiguous sub-array
"""
# base case: array has only one element
if left == right:
return array[right]
# Recursion
mid = (left + right) // 2
left_half_sum = max_subarray_sum(array, left, mid)
right_half_sum = max_subarray_sum(array, mid + 1, right)
cross_sum = max_cross_array_sum(array, left, mid, right)
return max(left_half_sum, right_half_sum, cross_sum)
if __name__ == "__main__":
array = [-2, -5, 6, -2, -3, 1, 5, -6]
array_length = len(array)
print(
"Maximum sum of contiguous subarray:",
max_subarray_sum(array, 0, array_length - 1),
)

View File

@ -112,19 +112,17 @@ def strassen(matrix1: list, matrix2: list) -> list:
[[139, 163], [121, 134], [100, 121]]
"""
if matrix_dimensions(matrix1)[1] != matrix_dimensions(matrix2)[0]:
msg = (
"Unable to multiply these matrices, please check the dimensions.\n"
f"Matrix A: {matrix1}\n"
f"Matrix B: {matrix2}"
raise Exception(
"Unable to multiply these matrices, please check the dimensions. \n"
f"Matrix A:{matrix1} \nMatrix B:{matrix2}"
)
raise Exception(msg)
dimension1 = matrix_dimensions(matrix1)
dimension2 = matrix_dimensions(matrix2)
if dimension1[0] == dimension1[1] and dimension2[0] == dimension2[1]:
return [matrix1, matrix2]
maximum = max(*dimension1, *dimension2)
maximum = max(max(dimension1), max(dimension2))
maxim = int(math.pow(2, math.ceil(math.log2(maximum))))
new_matrix1 = matrix1
new_matrix2 = matrix2

View File

@ -24,7 +24,7 @@ class Fibonacci:
return self.sequence[:index]
def main() -> None:
def main():
print(
"Fibonacci Series Using Dynamic Programming\n",
"Enter the index of the Fibonacci number you want to calculate ",

View File

@ -78,18 +78,17 @@ def knapsack_with_example_solution(w: int, wt: list, val: list):
num_items = len(wt)
if num_items != len(val):
msg = (
"The number of weights must be the same as the number of values.\n"
f"But got {num_items} weights and {len(val)} values"
raise ValueError(
"The number of weights must be the "
"same as the number of values.\nBut "
f"got {num_items} weights and {len(val)} values"
)
raise ValueError(msg)
for i in range(num_items):
if not isinstance(wt[i], int):
msg = (
"All weights must be integers but got weight of "
f"type {type(wt[i])} at index {i}"
raise TypeError(
"All weights must be integers but "
f"got weight of type {type(wt[i])} at index {i}"
)
raise TypeError(msg)
optimal_val, dp_table = knapsack(w, wt, val, num_items)
example_optional_set: set = set()

View File

@ -0,0 +1,93 @@
"""
author : Mayank Kumar Jha (mk9440)
"""
from __future__ import annotations
def find_max_sub_array(a, low, high):
if low == high:
return low, high, a[low]
else:
mid = (low + high) // 2
left_low, left_high, left_sum = find_max_sub_array(a, low, mid)
right_low, right_high, right_sum = find_max_sub_array(a, mid + 1, high)
cross_left, cross_right, cross_sum = find_max_cross_sum(a, low, mid, high)
if left_sum >= right_sum and left_sum >= cross_sum:
return left_low, left_high, left_sum
elif right_sum >= left_sum and right_sum >= cross_sum:
return right_low, right_high, right_sum
else:
return cross_left, cross_right, cross_sum
def find_max_cross_sum(a, low, mid, high):
left_sum, max_left = -999999999, -1
right_sum, max_right = -999999999, -1
summ = 0
for i in range(mid, low - 1, -1):
summ += a[i]
if summ > left_sum:
left_sum = summ
max_left = i
summ = 0
for i in range(mid + 1, high + 1):
summ += a[i]
if summ > right_sum:
right_sum = summ
max_right = i
return max_left, max_right, (left_sum + right_sum)
def max_sub_array(nums: list[int]) -> int:
"""
Finds the contiguous subarray which has the largest sum and return its sum.
>>> max_sub_array([-2, 1, -3, 4, -1, 2, 1, -5, 4])
6
An empty (sub)array has sum 0.
>>> max_sub_array([])
0
If all elements are negative, the largest subarray would be the empty array,
having the sum 0.
>>> max_sub_array([-1, -2, -3])
0
>>> max_sub_array([5, -2, -3])
5
>>> max_sub_array([31, -41, 59, 26, -53, 58, 97, -93, -23, 84])
187
"""
best = 0
current = 0
for i in nums:
current += i
current = max(current, 0)
best = max(best, current)
return best
if __name__ == "__main__":
"""
A random simulation of this algorithm.
"""
import time
from random import randint
from matplotlib import pyplot as plt
inputs = [10, 100, 1000, 10000, 50000, 100000, 200000, 300000, 400000, 500000]
tim = []
for i in inputs:
li = [randint(1, i) for j in range(i)]
strt = time.time()
(find_max_sub_array(li, 0, len(li) - 1))
end = time.time()
tim.append(end - strt)
print("No of Inputs Time Taken")
for i in range(len(inputs)):
print(inputs[i], "\t\t", tim[i])
plt.plot(inputs, tim)
plt.xlabel("Number of Inputs")
plt.ylabel("Time taken in seconds ")
plt.show()

View File

@ -1,60 +0,0 @@
"""
The maximum subarray sum problem is the task of finding the maximum sum that can be
obtained from a contiguous subarray within a given array of numbers. For example, given
the array [-2, 1, -3, 4, -1, 2, 1, -5, 4], the contiguous subarray with the maximum sum
is [4, -1, 2, 1], so the maximum subarray sum is 6.
Kadane's algorithm is a simple dynamic programming algorithm that solves the maximum
subarray sum problem in O(n) time and O(1) space.
Reference: https://en.wikipedia.org/wiki/Maximum_subarray_problem
"""
from collections.abc import Sequence
def max_subarray_sum(
arr: Sequence[float], allow_empty_subarrays: bool = False
) -> float:
"""
Solves the maximum subarray sum problem using Kadane's algorithm.
:param arr: the given array of numbers
:param allow_empty_subarrays: if True, then the algorithm considers empty subarrays
>>> max_subarray_sum([2, 8, 9])
19
>>> max_subarray_sum([0, 0])
0
>>> max_subarray_sum([-1.0, 0.0, 1.0])
1.0
>>> max_subarray_sum([1, 2, 3, 4, -2])
10
>>> max_subarray_sum([-2, 1, -3, 4, -1, 2, 1, -5, 4])
6
>>> max_subarray_sum([2, 3, -9, 8, -2])
8
>>> max_subarray_sum([-2, -3, -1, -4, -6])
-1
>>> max_subarray_sum([-2, -3, -1, -4, -6], allow_empty_subarrays=True)
0
>>> max_subarray_sum([])
0
"""
if not arr:
return 0
max_sum = 0 if allow_empty_subarrays else float("-inf")
curr_sum = 0.0
for num in arr:
curr_sum = max(0 if allow_empty_subarrays else num, curr_sum + num)
max_sum = max(max_sum, curr_sum)
return max_sum
if __name__ == "__main__":
from doctest import testmod
testmod()
nums = [-2, 1, -3, 4, -1, 2, 1, -5, 4]
print(f"{max_subarray_sum(nums) = }")

View File

@ -0,0 +1,20 @@
def max_subarray_sum(nums: list) -> int:
"""
>>> max_subarray_sum([6 , 9, -1, 3, -7, -5, 10])
17
"""
if not nums:
return 0
n = len(nums)
res, s, s_pre = nums[0], nums[0], nums[0]
for i in range(1, n):
s = max(nums[i], s_pre + nums[i])
s_pre = s
res = max(res, s)
return res
if __name__ == "__main__":
nums = [6, 9, -1, 3, -7, -5, 10]
print(max_subarray_sum(nums))

View File

@ -42,8 +42,7 @@ def min_steps_to_one(number: int) -> int:
"""
if number <= 0:
msg = f"n must be greater than 0. Got n = {number}"
raise ValueError(msg)
raise ValueError(f"n must be greater than 0. Got n = {number}")
table = [number + 1] * (number + 1)

View File

@ -1,97 +0,0 @@
"""
Regex matching check if a text matches pattern or not.
Pattern:
'.' Matches any single character.
'*' Matches zero or more of the preceding element.
More info:
https://medium.com/trick-the-interviwer/regular-expression-matching-9972eb74c03
"""
def recursive_match(text: str, pattern: str) -> bool:
"""
Recursive matching algorithm.
Time complexity: O(2 ^ (|text| + |pattern|))
Space complexity: Recursion depth is O(|text| + |pattern|).
:param text: Text to match.
:param pattern: Pattern to match.
:return: True if text matches pattern, False otherwise.
>>> recursive_match('abc', 'a.c')
True
>>> recursive_match('abc', 'af*.c')
True
>>> recursive_match('abc', 'a.c*')
True
>>> recursive_match('abc', 'a.c*d')
False
>>> recursive_match('aa', '.*')
True
"""
if not pattern:
return not text
if not text:
return pattern[-1] == "*" and recursive_match(text, pattern[:-2])
if text[-1] == pattern[-1] or pattern[-1] == ".":
return recursive_match(text[:-1], pattern[:-1])
if pattern[-1] == "*":
return recursive_match(text[:-1], pattern) or recursive_match(
text, pattern[:-2]
)
return False
def dp_match(text: str, pattern: str) -> bool:
"""
Dynamic programming matching algorithm.
Time complexity: O(|text| * |pattern|)
Space complexity: O(|text| * |pattern|)
:param text: Text to match.
:param pattern: Pattern to match.
:return: True if text matches pattern, False otherwise.
>>> dp_match('abc', 'a.c')
True
>>> dp_match('abc', 'af*.c')
True
>>> dp_match('abc', 'a.c*')
True
>>> dp_match('abc', 'a.c*d')
False
>>> dp_match('aa', '.*')
True
"""
m = len(text)
n = len(pattern)
dp = [[False for _ in range(n + 1)] for _ in range(m + 1)]
dp[0][0] = True
for j in range(1, n + 1):
dp[0][j] = pattern[j - 1] == "*" and dp[0][j - 2]
for i in range(1, m + 1):
for j in range(1, n + 1):
if pattern[j - 1] in {".", text[i - 1]}:
dp[i][j] = dp[i - 1][j - 1]
elif pattern[j - 1] == "*":
dp[i][j] = dp[i][j - 2]
if pattern[j - 2] in {".", text[i - 1]}:
dp[i][j] |= dp[i - 1][j]
else:
dp[i][j] = False
return dp[m][n]
if __name__ == "__main__":
import doctest
doctest.testmod()

View File

@ -177,15 +177,13 @@ def _enforce_args(n: int, prices: list):
the rod
"""
if n < 0:
msg = f"n must be greater than or equal to 0. Got n = {n}"
raise ValueError(msg)
raise ValueError(f"n must be greater than or equal to 0. Got n = {n}")
if n > len(prices):
msg = (
"Each integral piece of rod must have a corresponding price. "
f"Got n = {n} but length of prices = {len(prices)}"
raise ValueError(
"Each integral piece of rod must have a corresponding "
f"price. Got n = {n} but length of prices = {len(prices)}"
)
raise ValueError(msg)
def main():

View File

@ -1,24 +0,0 @@
# Tribonacci sequence using Dynamic Programming
def tribonacci(num: int) -> list[int]:
"""
Given a number, return first n Tribonacci Numbers.
>>> tribonacci(5)
[0, 0, 1, 1, 2]
>>> tribonacci(8)
[0, 0, 1, 1, 2, 4, 7, 13]
"""
dp = [0] * num
dp[2] = 1
for i in range(3, num):
dp[i] = dp[i - 1] + dp[i - 2] + dp[i - 3]
return dp
if __name__ == "__main__":
import doctest
doctest.testmod()

View File

@ -297,13 +297,11 @@ def _validate_list(_object: Any, var_name: str) -> None:
"""
if not isinstance(_object, list):
msg = f"{var_name} must be a list"
raise ValueError(msg)
raise ValueError(f"{var_name} must be a list")
else:
for x in _object:
if not isinstance(x, str):
msg = f"{var_name} must be a list of strings"
raise ValueError(msg)
raise ValueError(f"{var_name} must be a list of strings")
def _validate_dicts(
@ -386,15 +384,14 @@ def _validate_dict(
ValueError: mock_name nested dictionary all values must be float
"""
if not isinstance(_object, dict):
msg = f"{var_name} must be a dict"
raise ValueError(msg)
raise ValueError(f"{var_name} must be a dict")
if not all(isinstance(x, str) for x in _object):
msg = f"{var_name} all keys must be strings"
raise ValueError(msg)
raise ValueError(f"{var_name} all keys must be strings")
if not all(isinstance(x, value_type) for x in _object.values()):
nested_text = "nested dictionary " if nested else ""
msg = f"{var_name} {nested_text}all values must be {value_type.__name__}"
raise ValueError(msg)
raise ValueError(
f"{var_name} {nested_text}all values must be {value_type.__name__}"
)
if __name__ == "__main__":

View File

@ -1,12 +1,7 @@
# https://en.m.wikipedia.org/wiki/Electric_power
from __future__ import annotations
from typing import NamedTuple
class Result(NamedTuple):
name: str
value: float
from collections import namedtuple
def electric_power(voltage: float, current: float, power: float) -> tuple:
@ -15,11 +10,11 @@ def electric_power(voltage: float, current: float, power: float) -> tuple:
fundamental value of electrical system.
examples are below:
>>> electric_power(voltage=0, current=2, power=5)
Result(name='voltage', value=2.5)
result(name='voltage', value=2.5)
>>> electric_power(voltage=2, current=2, power=0)
Result(name='power', value=4.0)
result(name='power', value=4.0)
>>> electric_power(voltage=-2, current=3, power=0)
Result(name='power', value=6.0)
result(name='power', value=6.0)
>>> electric_power(voltage=2, current=4, power=2)
Traceback (most recent call last):
...
@ -33,8 +28,9 @@ def electric_power(voltage: float, current: float, power: float) -> tuple:
...
ValueError: Power cannot be negative in any electrical/electronics system
>>> electric_power(voltage=2.2, current=2.2, power=0)
Result(name='power', value=4.84)
result(name='power', value=4.84)
"""
result = namedtuple("result", "name value")
if (voltage, current, power).count(0) != 1:
raise ValueError("Only one argument must be 0")
elif power < 0:
@ -42,11 +38,11 @@ def electric_power(voltage: float, current: float, power: float) -> tuple:
"Power cannot be negative in any electrical/electronics system"
)
elif voltage == 0:
return Result("voltage", power / current)
return result("voltage", power / current)
elif current == 0:
return Result("current", power / voltage)
return result("current", power / voltage)
elif power == 0:
return Result("power", float(round(abs(voltage * current), 2)))
return result("power", float(round(abs(voltage * current), 2)))
else:
raise ValueError("Exactly one argument must be 0")

View File

@ -23,8 +23,7 @@ def resistor_parallel(resistors: list[float]) -> float:
index = 0
for resistor in resistors:
if resistor <= 0:
msg = f"Resistor at index {index} has a negative or zero value!"
raise ValueError(msg)
raise ValueError(f"Resistor at index {index} has a negative or zero value!")
first_sum += 1 / float(resistor)
index += 1
return 1 / first_sum
@ -48,8 +47,7 @@ def resistor_series(resistors: list[float]) -> float:
for resistor in resistors:
sum_r += resistor
if resistor < 0:
msg = f"Resistor at index {index} has a negative value!"
raise ValueError(msg)
raise ValueError(f"Resistor at index {index} has a negative value!")
index += 1
return sum_r

View File

@ -4,7 +4,7 @@ from __future__ import annotations
def simple_interest(
principal: float, daily_interest_rate: float, days_between_payments: float
principal: float, daily_interest_rate: float, days_between_payments: int
) -> float:
"""
>>> simple_interest(18000.0, 0.06, 3)
@ -42,7 +42,7 @@ def simple_interest(
def compound_interest(
principal: float,
nominal_annual_interest_rate_percentage: float,
number_of_compounding_periods: float,
number_of_compounding_periods: int,
) -> float:
"""
>>> compound_interest(10000.0, 0.05, 3)
@ -77,43 +77,6 @@ def compound_interest(
)
def apr_interest(
principal: float,
nominal_annual_percentage_rate: float,
number_of_years: float,
) -> float:
"""
>>> apr_interest(10000.0, 0.05, 3)
1618.223072263547
>>> apr_interest(10000.0, 0.05, 1)
512.6749646744732
>>> apr_interest(0.5, 0.05, 3)
0.08091115361317736
>>> apr_interest(10000.0, 0.06, -4)
Traceback (most recent call last):
...
ValueError: number_of_years must be > 0
>>> apr_interest(10000.0, -3.5, 3.0)
Traceback (most recent call last):
...
ValueError: nominal_annual_percentage_rate must be >= 0
>>> apr_interest(-5500.0, 0.01, 5)
Traceback (most recent call last):
...
ValueError: principal must be > 0
"""
if number_of_years <= 0:
raise ValueError("number_of_years must be > 0")
if nominal_annual_percentage_rate < 0:
raise ValueError("nominal_annual_percentage_rate must be >= 0")
if principal <= 0:
raise ValueError("principal must be > 0")
return compound_interest(
principal, nominal_annual_percentage_rate / 365, number_of_years * 365
)
if __name__ == "__main__":
import doctest

View File

@ -1,42 +0,0 @@
"""
Reference: https://www.investopedia.com/terms/p/presentvalue.asp
An algorithm that calculates the present value of a stream of yearly cash flows given...
1. The discount rate (as a decimal, not a percent)
2. An array of cash flows, with the index of the cash flow being the associated year
Note: This algorithm assumes that cash flows are paid at the end of the specified year
"""
def present_value(discount_rate: float, cash_flows: list[float]) -> float:
"""
>>> present_value(0.13, [10, 20.70, -293, 297])
4.69
>>> present_value(0.07, [-109129.39, 30923.23, 15098.93, 29734,39])
-42739.63
>>> present_value(0.07, [109129.39, 30923.23, 15098.93, 29734,39])
175519.15
>>> present_value(-1, [109129.39, 30923.23, 15098.93, 29734,39])
Traceback (most recent call last):
...
ValueError: Discount rate cannot be negative
>>> present_value(0.03, [])
Traceback (most recent call last):
...
ValueError: Cash flows list cannot be empty
"""
if discount_rate < 0:
raise ValueError("Discount rate cannot be negative")
if not cash_flows:
raise ValueError("Cash flows list cannot be empty")
present_value = sum(
cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(cash_flows)
)
return round(present_value, ndigits=2)
if __name__ == "__main__":
import doctest
doctest.testmod()

View File

@ -82,4 +82,3 @@ if __name__ == "__main__":
vertices = [(-175, -125), (0, 175), (175, -125)] # vertices of triangle
triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
turtle.Screen().exitonclick()

View File

@ -21,54 +21,6 @@ MUTATION_PROBABILITY = 0.4
random.seed(random.randint(0, 1000))
def evaluate(item: str, main_target: str) -> tuple[str, float]:
"""
Evaluate how similar the item is with the target by just
counting each char in the right position
>>> evaluate("Helxo Worlx", "Hello World")
('Helxo Worlx', 9.0)
"""
score = len([g for position, g in enumerate(item) if g == main_target[position]])
return (item, float(score))
def crossover(parent_1: str, parent_2: str) -> tuple[str, str]:
"""Slice and combine two string at a random point."""
random_slice = random.randint(0, len(parent_1) - 1)
child_1 = parent_1[:random_slice] + parent_2[random_slice:]
child_2 = parent_2[:random_slice] + parent_1[random_slice:]
return (child_1, child_2)
def mutate(child: str, genes: list[str]) -> str:
"""Mutate a random gene of a child with another one from the list."""
child_list = list(child)
if random.uniform(0, 1) < MUTATION_PROBABILITY:
child_list[random.randint(0, len(child)) - 1] = random.choice(genes)
return "".join(child_list)
# Select, crossover and mutate a new population.
def select(
parent_1: tuple[str, float],
population_score: list[tuple[str, float]],
genes: list[str],
) -> list[str]:
"""Select the second parent and generate new population"""
pop = []
# Generate more children proportionally to the fitness score.
child_n = int(parent_1[1] * 100) + 1
child_n = 10 if child_n >= 10 else child_n
for _ in range(child_n):
parent_2 = population_score[random.randint(0, N_SELECTED)][0]
child_1, child_2 = crossover(parent_1[0], parent_2)
# Append new string to the population list.
pop.append(mutate(child_1, genes))
pop.append(mutate(child_2, genes))
return pop
def basic(target: str, genes: list[str], debug: bool = True) -> tuple[int, int, str]:
"""
Verify that the target contains no genes besides the ones inside genes variable.
@ -96,13 +48,13 @@ def basic(target: str, genes: list[str], debug: bool = True) -> tuple[int, int,
# Verify if N_POPULATION is bigger than N_SELECTED
if N_POPULATION < N_SELECTED:
msg = f"{N_POPULATION} must be bigger than {N_SELECTED}"
raise ValueError(msg)
raise ValueError(f"{N_POPULATION} must be bigger than {N_SELECTED}")
# Verify that the target contains no genes besides the ones inside genes variable.
not_in_genes_list = sorted({c for c in target if c not in genes})
if not_in_genes_list:
msg = f"{not_in_genes_list} is not in genes list, evolution cannot converge"
raise ValueError(msg)
raise ValueError(
f"{not_in_genes_list} is not in genes list, evolution cannot converge"
)
# Generate random starting population.
population = []
@ -118,6 +70,17 @@ def basic(target: str, genes: list[str], debug: bool = True) -> tuple[int, int,
total_population += len(population)
# Random population created. Now it's time to evaluate.
def evaluate(item: str, main_target: str = target) -> tuple[str, float]:
"""
Evaluate how similar the item is with the target by just
counting each char in the right position
>>> evaluate("Helxo Worlx", Hello World)
["Helxo Worlx", 9]
"""
score = len(
[g for position, g in enumerate(item) if g == main_target[position]]
)
return (item, float(score))
# Adding a bit of concurrency can make everything faster,
#
@ -131,7 +94,7 @@ def basic(target: str, genes: list[str], debug: bool = True) -> tuple[int, int,
#
# but with a simple algorithm like this, it will probably be slower.
# We just need to call evaluate for every item inside the population.
population_score = [evaluate(item, target) for item in population]
population_score = [evaluate(item) for item in population]
# Check if there is a matching evolution.
population_score = sorted(population_score, key=lambda x: x[1], reverse=True)
@ -158,9 +121,41 @@ def basic(target: str, genes: list[str], debug: bool = True) -> tuple[int, int,
(item, score / len(target)) for item, score in population_score
]
# Select, crossover and mutate a new population.
def select(parent_1: tuple[str, float]) -> list[str]:
"""Select the second parent and generate new population"""
pop = []
# Generate more children proportionally to the fitness score.
child_n = int(parent_1[1] * 100) + 1
child_n = 10 if child_n >= 10 else child_n
for _ in range(child_n):
parent_2 = population_score[ # noqa: B023
random.randint(0, N_SELECTED)
][0]
child_1, child_2 = crossover(parent_1[0], parent_2)
# Append new string to the population list.
pop.append(mutate(child_1))
pop.append(mutate(child_2))
return pop
def crossover(parent_1: str, parent_2: str) -> tuple[str, str]:
"""Slice and combine two string at a random point."""
random_slice = random.randint(0, len(parent_1) - 1)
child_1 = parent_1[:random_slice] + parent_2[random_slice:]
child_2 = parent_2[:random_slice] + parent_1[random_slice:]
return (child_1, child_2)
def mutate(child: str) -> str:
"""Mutate a random gene of a child with another one from the list."""
child_list = list(child)
if random.uniform(0, 1) < MUTATION_PROBABILITY:
child_list[random.randint(0, len(child)) - 1] = random.choice(genes)
return "".join(child_list)
# This is selection
for i in range(N_SELECTED):
population.extend(select(population_score[int(i)], population_score, genes))
population.extend(select(population_score[int(i)]))
# Check if the population has already reached the maximum value and if so,
# break the cycle. If this check is disabled, the algorithm will take
# forever to compute large strings, but will also calculate small strings in

View File

@ -28,8 +28,9 @@ def convert_to_2d(
TypeError: Input values must either be float or int: ['1', 2, 3, 10, 10]
"""
if not all(isinstance(val, (float, int)) for val in locals().values()):
msg = f"Input values must either be float or int: {list(locals().values())}"
raise TypeError(msg)
raise TypeError(
"Input values must either be float or int: " f"{list(locals().values())}"
)
projected_x = ((x * distance) / (z + distance)) * scale
projected_y = ((y * distance) / (z + distance)) * scale
return projected_x, projected_y
@ -70,11 +71,10 @@ def rotate(
input_variables = locals()
del input_variables["axis"]
if not all(isinstance(val, (float, int)) for val in input_variables.values()):
msg = (
raise TypeError(
"Input values except axis must either be float or int: "
f"{list(input_variables.values())}"
)
raise TypeError(msg)
angle = (angle % 360) / 450 * 180 / math.pi
if axis == "z":
new_x = x * math.cos(angle) - y * math.sin(angle)

View File

@ -26,8 +26,8 @@ def pass_and_relaxation(
cst_bwd: dict,
queue: PriorityQueue,
parent: dict,
shortest_distance: float,
) -> float:
shortest_distance: float | int,
) -> float | int:
for nxt, d in graph[v]:
if nxt in visited_forward:
continue

View File

@ -73,10 +73,9 @@ class Graph:
target_vertex_parent = self.parent.get(target_vertex)
if target_vertex_parent is None:
msg = (
raise ValueError(
f"No path from vertex: {self.source_vertex} to vertex: {target_vertex}"
)
raise ValueError(msg)
return self.shortest_path(target_vertex_parent) + f"->{target_vertex}"

View File

@ -1,89 +0,0 @@
"""
This script implements the Dijkstra algorithm on a binary grid.
The grid consists of 0s and 1s, where 1 represents
a walkable node and 0 represents an obstacle.
The algorithm finds the shortest path from a start node to a destination node.
Diagonal movement can be allowed or disallowed.
"""
from heapq import heappop, heappush
import numpy as np
def dijkstra(
grid: np.ndarray,
source: tuple[int, int],
destination: tuple[int, int],
allow_diagonal: bool,
) -> tuple[float | int, list[tuple[int, int]]]:
"""
Implements Dijkstra's algorithm on a binary grid.
Args:
grid (np.ndarray): A 2D numpy array representing the grid.
1 represents a walkable node and 0 represents an obstacle.
source (Tuple[int, int]): A tuple representing the start node.
destination (Tuple[int, int]): A tuple representing the
destination node.
allow_diagonal (bool): A boolean determining whether
diagonal movements are allowed.
Returns:
Tuple[Union[float, int], List[Tuple[int, int]]]:
The shortest distance from the start node to the destination node
and the shortest path as a list of nodes.
>>> dijkstra(np.array([[1, 1, 1], [0, 1, 0], [0, 1, 1]]), (0, 0), (2, 2), False)
(4.0, [(0, 0), (0, 1), (1, 1), (2, 1), (2, 2)])
>>> dijkstra(np.array([[1, 1, 1], [0, 1, 0], [0, 1, 1]]), (0, 0), (2, 2), True)
(2.0, [(0, 0), (1, 1), (2, 2)])
>>> dijkstra(np.array([[1, 1, 1], [0, 0, 1], [0, 1, 1]]), (0, 0), (2, 2), False)
(4.0, [(0, 0), (0, 1), (0, 2), (1, 2), (2, 2)])
"""
rows, cols = grid.shape
dx = [-1, 1, 0, 0]
dy = [0, 0, -1, 1]
if allow_diagonal:
dx += [-1, -1, 1, 1]
dy += [-1, 1, -1, 1]
queue, visited = [(0, source)], set()
matrix = np.full((rows, cols), np.inf)
matrix[source] = 0
predecessors = np.empty((rows, cols), dtype=object)
predecessors[source] = None
while queue:
(dist, (x, y)) = heappop(queue)
if (x, y) in visited:
continue
visited.add((x, y))
if (x, y) == destination:
path = []
while (x, y) != source:
path.append((x, y))
x, y = predecessors[x, y]
path.append(source) # add the source manually
path.reverse()
return matrix[destination], path
for i in range(len(dx)):
nx, ny = x + dx[i], y + dy[i]
if 0 <= nx < rows and 0 <= ny < cols:
next_node = grid[nx][ny]
if next_node == 1 and matrix[nx, ny] > dist + 1:
heappush(queue, (dist + 1, (nx, ny)))
matrix[nx, ny] = dist + 1
predecessors[nx, ny] = (x, y)
return np.inf, []
if __name__ == "__main__":
import doctest
doctest.testmod()

View File

@ -39,7 +39,7 @@ class DirectedGraph:
stack = []
visited = []
if s == -2:
s = next(iter(self.graph))
s = list(self.graph)[0]
stack.append(s)
visited.append(s)
ss = s
@ -87,7 +87,7 @@ class DirectedGraph:
d = deque()
visited = []
if s == -2:
s = next(iter(self.graph))
s = list(self.graph)[0]
d.append(s)
visited.append(s)
while d:
@ -114,7 +114,7 @@ class DirectedGraph:
stack = []
visited = []
if s == -2:
s = next(iter(self.graph))
s = list(self.graph)[0]
stack.append(s)
visited.append(s)
ss = s
@ -146,7 +146,7 @@ class DirectedGraph:
def cycle_nodes(self):
stack = []
visited = []
s = next(iter(self.graph))
s = list(self.graph)[0]
stack.append(s)
visited.append(s)
parent = -2
@ -199,7 +199,7 @@ class DirectedGraph:
def has_cycle(self):
stack = []
visited = []
s = next(iter(self.graph))
s = list(self.graph)[0]
stack.append(s)
visited.append(s)
parent = -2
@ -305,7 +305,7 @@ class Graph:
stack = []
visited = []
if s == -2:
s = next(iter(self.graph))
s = list(self.graph)[0]
stack.append(s)
visited.append(s)
ss = s
@ -353,7 +353,7 @@ class Graph:
d = deque()
visited = []
if s == -2:
s = next(iter(self.graph))
s = list(self.graph)[0]
d.append(s)
visited.append(s)
while d:
@ -371,7 +371,7 @@ class Graph:
def cycle_nodes(self):
stack = []
visited = []
s = next(iter(self.graph))
s = list(self.graph)[0]
stack.append(s)
visited.append(s)
parent = -2
@ -424,7 +424,7 @@ class Graph:
def has_cycle(self):
stack = []
visited = []
s = next(iter(self.graph))
s = list(self.graph)[0]
stack.append(s)
visited.append(s)
parent = -2

View File

@ -113,7 +113,7 @@ class PushRelabelExecutor(MaximumFlowAlgorithmExecutor):
vertices_list = [
i
for i in range(self.verticies_count)
if i not in {self.source_index, self.sink_index}
if i != self.source_index and i != self.sink_index
]
# move through list

View File

@ -20,7 +20,7 @@ def check_circuit_or_path(graph, max_node):
odd_degree_nodes = 0
odd_node = -1
for i in range(max_node):
if i not in graph:
if i not in graph.keys():
continue
if len(graph[i]) % 2 == 1:
odd_degree_nodes += 1

View File

@ -1,589 +0,0 @@
#!/usr/bin/env python3
"""
Author: Vikram Nithyanandam
Description:
The following implementation is a robust unweighted Graph data structure
implemented using an adjacency list. This vertices and edges of this graph can be
effectively initialized and modified while storing your chosen generic
value in each vertex.
Adjacency List: https://en.wikipedia.org/wiki/Adjacency_list
Potential Future Ideas:
- Add a flag to set edge weights on and set edge weights
- Make edge weights and vertex values customizable to store whatever the client wants
- Support multigraph functionality if the client wants it
"""
from __future__ import annotations
import random
import unittest
from pprint import pformat
from typing import Generic, TypeVar
T = TypeVar("T")
class GraphAdjacencyList(Generic[T]):
def __init__(
self, vertices: list[T], edges: list[list[T]], directed: bool = True
) -> None:
"""
Parameters:
- vertices: (list[T]) The list of vertex names the client wants to
pass in. Default is empty.
- edges: (list[list[T]]) The list of edges the client wants to
pass in. Each edge is a 2-element list. Default is empty.
- directed: (bool) Indicates if graph is directed or undirected.
Default is True.
"""
self.adj_list: dict[T, list[T]] = {} # dictionary of lists of T
self.directed = directed
# Falsey checks
edges = edges or []
vertices = vertices or []
for vertex in vertices:
self.add_vertex(vertex)
for edge in edges:
if len(edge) != 2:
msg = f"Invalid input: {edge} is the wrong length."
raise ValueError(msg)
self.add_edge(edge[0], edge[1])
def add_vertex(self, vertex: T) -> None:
"""
Adds a vertex to the graph. If the given vertex already exists,
a ValueError will be thrown.
"""
if self.contains_vertex(vertex):
msg = f"Incorrect input: {vertex} is already in the graph."
raise ValueError(msg)
self.adj_list[vertex] = []
def add_edge(self, source_vertex: T, destination_vertex: T) -> None:
"""
Creates an edge from source vertex to destination vertex. If any
given vertex doesn't exist or the edge already exists, a ValueError
will be thrown.
"""
if not (
self.contains_vertex(source_vertex)
and self.contains_vertex(destination_vertex)
):
msg = (
f"Incorrect input: Either {source_vertex} or "
f"{destination_vertex} does not exist"
)
raise ValueError(msg)
if self.contains_edge(source_vertex, destination_vertex):
msg = (
"Incorrect input: The edge already exists between "
f"{source_vertex} and {destination_vertex}"
)
raise ValueError(msg)
# add the destination vertex to the list associated with the source vertex
# and vice versa if not directed
self.adj_list[source_vertex].append(destination_vertex)
if not self.directed:
self.adj_list[destination_vertex].append(source_vertex)
def remove_vertex(self, vertex: T) -> None:
"""
Removes the given vertex from the graph and deletes all incoming and
outgoing edges from the given vertex as well. If the given vertex
does not exist, a ValueError will be thrown.
"""
if not self.contains_vertex(vertex):
msg = f"Incorrect input: {vertex} does not exist in this graph."
raise ValueError(msg)
if not self.directed:
# If not directed, find all neighboring vertices and delete all references
# of edges connecting to the given vertex
for neighbor in self.adj_list[vertex]:
self.adj_list[neighbor].remove(vertex)
else:
# If directed, search all neighbors of all vertices and delete all
# references of edges connecting to the given vertex
for edge_list in self.adj_list.values():
if vertex in edge_list:
edge_list.remove(vertex)
# Finally, delete the given vertex and all of its outgoing edge references
self.adj_list.pop(vertex)
def remove_edge(self, source_vertex: T, destination_vertex: T) -> None:
"""
Removes the edge between the two vertices. If any given vertex
doesn't exist or the edge does not exist, a ValueError will be thrown.
"""
if not (
self.contains_vertex(source_vertex)
and self.contains_vertex(destination_vertex)
):
msg = (
f"Incorrect input: Either {source_vertex} or "
f"{destination_vertex} does not exist"
)
raise ValueError(msg)
if not self.contains_edge(source_vertex, destination_vertex):
msg = (
"Incorrect input: The edge does NOT exist between "
f"{source_vertex} and {destination_vertex}"
)
raise ValueError(msg)
# remove the destination vertex from the list associated with the source
# vertex and vice versa if not directed
self.adj_list[source_vertex].remove(destination_vertex)
if not self.directed:
self.adj_list[destination_vertex].remove(source_vertex)
def contains_vertex(self, vertex: T) -> bool:
"""
Returns True if the graph contains the vertex, False otherwise.
"""
return vertex in self.adj_list
def contains_edge(self, source_vertex: T, destination_vertex: T) -> bool:
"""
Returns True if the graph contains the edge from the source_vertex to the
destination_vertex, False otherwise. If any given vertex doesn't exist, a
ValueError will be thrown.
"""
if not (
self.contains_vertex(source_vertex)
and self.contains_vertex(destination_vertex)
):
msg = (
f"Incorrect input: Either {source_vertex} "
f"or {destination_vertex} does not exist."
)
raise ValueError(msg)
return destination_vertex in self.adj_list[source_vertex]
def clear_graph(self) -> None:
"""
Clears all vertices and edges.
"""
self.adj_list = {}
def __repr__(self) -> str:
return pformat(self.adj_list)
class TestGraphAdjacencyList(unittest.TestCase):
def __assert_graph_edge_exists_check(
self,
undirected_graph: GraphAdjacencyList,
directed_graph: GraphAdjacencyList,
edge: list[int],
) -> None:
self.assertTrue(undirected_graph.contains_edge(edge[0], edge[1]))
self.assertTrue(undirected_graph.contains_edge(edge[1], edge[0]))
self.assertTrue(directed_graph.contains_edge(edge[0], edge[1]))
def __assert_graph_edge_does_not_exist_check(
self,
undirected_graph: GraphAdjacencyList,
directed_graph: GraphAdjacencyList,
edge: list[int],
) -> None:
self.assertFalse(undirected_graph.contains_edge(edge[0], edge[1]))
self.assertFalse(undirected_graph.contains_edge(edge[1], edge[0]))
self.assertFalse(directed_graph.contains_edge(edge[0], edge[1]))
def __assert_graph_vertex_exists_check(
self,
undirected_graph: GraphAdjacencyList,
directed_graph: GraphAdjacencyList,
vertex: int,
) -> None:
self.assertTrue(undirected_graph.contains_vertex(vertex))
self.assertTrue(directed_graph.contains_vertex(vertex))
def __assert_graph_vertex_does_not_exist_check(
self,
undirected_graph: GraphAdjacencyList,
directed_graph: GraphAdjacencyList,
vertex: int,
) -> None:
self.assertFalse(undirected_graph.contains_vertex(vertex))
self.assertFalse(directed_graph.contains_vertex(vertex))
def __generate_random_edges(
self, vertices: list[int], edge_pick_count: int
) -> list[list[int]]:
self.assertTrue(edge_pick_count <= len(vertices))
random_source_vertices: list[int] = random.sample(
vertices[0 : int(len(vertices) / 2)], edge_pick_count
)
random_destination_vertices: list[int] = random.sample(
vertices[int(len(vertices) / 2) :], edge_pick_count
)
random_edges: list[list[int]] = []
for source in random_source_vertices:
for dest in random_destination_vertices:
random_edges.append([source, dest])
return random_edges
def __generate_graphs(
self, vertex_count: int, min_val: int, max_val: int, edge_pick_count: int
) -> tuple[GraphAdjacencyList, GraphAdjacencyList, list[int], list[list[int]]]:
if max_val - min_val + 1 < vertex_count:
raise ValueError(
"Will result in duplicate vertices. Either increase range "
"between min_val and max_val or decrease vertex count."
)
# generate graph input
random_vertices: list[int] = random.sample(
range(min_val, max_val + 1), vertex_count
)
random_edges: list[list[int]] = self.__generate_random_edges(
random_vertices, edge_pick_count
)
# build graphs
undirected_graph = GraphAdjacencyList(
vertices=random_vertices, edges=random_edges, directed=False
)
directed_graph = GraphAdjacencyList(
vertices=random_vertices, edges=random_edges, directed=True
)
return undirected_graph, directed_graph, random_vertices, random_edges
def test_init_check(self) -> None:
(
undirected_graph,
directed_graph,
random_vertices,
random_edges,
) = self.__generate_graphs(20, 0, 100, 4)
# test graph initialization with vertices and edges
for num in random_vertices:
self.__assert_graph_vertex_exists_check(
undirected_graph, directed_graph, num
)
for edge in random_edges:
self.__assert_graph_edge_exists_check(
undirected_graph, directed_graph, edge
)
self.assertFalse(undirected_graph.directed)
self.assertTrue(directed_graph.directed)
def test_contains_vertex(self) -> None:
random_vertices: list[int] = random.sample(range(101), 20)
# Build graphs WITHOUT edges
undirected_graph = GraphAdjacencyList(
vertices=random_vertices, edges=[], directed=False
)
directed_graph = GraphAdjacencyList(
vertices=random_vertices, edges=[], directed=True
)
# Test contains_vertex
for num in range(101):
self.assertEqual(
num in random_vertices, undirected_graph.contains_vertex(num)
)
self.assertEqual(
num in random_vertices, directed_graph.contains_vertex(num)
)
def test_add_vertices(self) -> None:
random_vertices: list[int] = random.sample(range(101), 20)
# build empty graphs
undirected_graph: GraphAdjacencyList = GraphAdjacencyList(
vertices=[], edges=[], directed=False
)
directed_graph: GraphAdjacencyList = GraphAdjacencyList(
vertices=[], edges=[], directed=True
)
# run add_vertex
for num in random_vertices:
undirected_graph.add_vertex(num)
for num in random_vertices:
directed_graph.add_vertex(num)
# test add_vertex worked
for num in random_vertices:
self.__assert_graph_vertex_exists_check(
undirected_graph, directed_graph, num
)
def test_remove_vertices(self) -> None:
random_vertices: list[int] = random.sample(range(101), 20)
# build graphs WITHOUT edges
undirected_graph = GraphAdjacencyList(
vertices=random_vertices, edges=[], directed=False
)
directed_graph = GraphAdjacencyList(
vertices=random_vertices, edges=[], directed=True
)
# test remove_vertex worked
for num in random_vertices:
self.__assert_graph_vertex_exists_check(
undirected_graph, directed_graph, num
)
undirected_graph.remove_vertex(num)
directed_graph.remove_vertex(num)
self.__assert_graph_vertex_does_not_exist_check(
undirected_graph, directed_graph, num
)
def test_add_and_remove_vertices_repeatedly(self) -> None:
random_vertices1: list[int] = random.sample(range(51), 20)
random_vertices2: list[int] = random.sample(range(51, 101), 20)
# build graphs WITHOUT edges
undirected_graph = GraphAdjacencyList(
vertices=random_vertices1, edges=[], directed=False
)
directed_graph = GraphAdjacencyList(
vertices=random_vertices1, edges=[], directed=True
)
# test adding and removing vertices
for i, _ in enumerate(random_vertices1):
undirected_graph.add_vertex(random_vertices2[i])
directed_graph.add_vertex(random_vertices2[i])
self.__assert_graph_vertex_exists_check(
undirected_graph, directed_graph, random_vertices2[i]
)
undirected_graph.remove_vertex(random_vertices1[i])
directed_graph.remove_vertex(random_vertices1[i])
self.__assert_graph_vertex_does_not_exist_check(
undirected_graph, directed_graph, random_vertices1[i]
)
# remove all vertices
for i, _ in enumerate(random_vertices1):
undirected_graph.remove_vertex(random_vertices2[i])
directed_graph.remove_vertex(random_vertices2[i])
self.__assert_graph_vertex_does_not_exist_check(
undirected_graph, directed_graph, random_vertices2[i]
)
def test_contains_edge(self) -> None:
# generate graphs and graph input
vertex_count = 20
(
undirected_graph,
directed_graph,
random_vertices,
random_edges,
) = self.__generate_graphs(vertex_count, 0, 100, 4)
# generate all possible edges for testing
all_possible_edges: list[list[int]] = []
for i in range(vertex_count - 1):
for j in range(i + 1, vertex_count):
all_possible_edges.append([random_vertices[i], random_vertices[j]])
all_possible_edges.append([random_vertices[j], random_vertices[i]])
# test contains_edge function
for edge in all_possible_edges:
if edge in random_edges:
self.__assert_graph_edge_exists_check(
undirected_graph, directed_graph, edge
)
elif [edge[1], edge[0]] in random_edges:
# since this edge exists for undirected but the reverse
# may not exist for directed
self.__assert_graph_edge_exists_check(
undirected_graph, directed_graph, [edge[1], edge[0]]
)
else:
self.__assert_graph_edge_does_not_exist_check(
undirected_graph, directed_graph, edge
)
def test_add_edge(self) -> None:
# generate graph input
random_vertices: list[int] = random.sample(range(101), 15)
random_edges: list[list[int]] = self.__generate_random_edges(random_vertices, 4)
# build graphs WITHOUT edges
undirected_graph = GraphAdjacencyList(
vertices=random_vertices, edges=[], directed=False
)
directed_graph = GraphAdjacencyList(
vertices=random_vertices, edges=[], directed=True
)
# run and test add_edge
for edge in random_edges:
undirected_graph.add_edge(edge[0], edge[1])
directed_graph.add_edge(edge[0], edge[1])
self.__assert_graph_edge_exists_check(
undirected_graph, directed_graph, edge
)
def test_remove_edge(self) -> None:
# generate graph input and graphs
(
undirected_graph,
directed_graph,
random_vertices,
random_edges,
) = self.__generate_graphs(20, 0, 100, 4)
# run and test remove_edge
for edge in random_edges:
self.__assert_graph_edge_exists_check(
undirected_graph, directed_graph, edge
)
undirected_graph.remove_edge(edge[0], edge[1])
directed_graph.remove_edge(edge[0], edge[1])
self.__assert_graph_edge_does_not_exist_check(
undirected_graph, directed_graph, edge
)
def test_add_and_remove_edges_repeatedly(self) -> None:
(
undirected_graph,
directed_graph,
random_vertices,
random_edges,
) = self.__generate_graphs(20, 0, 100, 4)
# make some more edge options!
more_random_edges: list[list[int]] = []
while len(more_random_edges) != len(random_edges):
edges: list[list[int]] = self.__generate_random_edges(random_vertices, 4)
for edge in edges:
if len(more_random_edges) == len(random_edges):
break
elif edge not in more_random_edges and edge not in random_edges:
more_random_edges.append(edge)
for i, _ in enumerate(random_edges):
undirected_graph.add_edge(more_random_edges[i][0], more_random_edges[i][1])
directed_graph.add_edge(more_random_edges[i][0], more_random_edges[i][1])
self.__assert_graph_edge_exists_check(
undirected_graph, directed_graph, more_random_edges[i]
)
undirected_graph.remove_edge(random_edges[i][0], random_edges[i][1])
directed_graph.remove_edge(random_edges[i][0], random_edges[i][1])
self.__assert_graph_edge_does_not_exist_check(
undirected_graph, directed_graph, random_edges[i]
)
def test_add_vertex_exception_check(self) -> None:
(
undirected_graph,
directed_graph,
random_vertices,
random_edges,
) = self.__generate_graphs(20, 0, 100, 4)
for vertex in random_vertices:
with self.assertRaises(ValueError):
undirected_graph.add_vertex(vertex)
with self.assertRaises(ValueError):
directed_graph.add_vertex(vertex)
def test_remove_vertex_exception_check(self) -> None:
(
undirected_graph,
directed_graph,
random_vertices,
random_edges,
) = self.__generate_graphs(20, 0, 100, 4)
for i in range(101):
if i not in random_vertices:
with self.assertRaises(ValueError):
undirected_graph.remove_vertex(i)
with self.assertRaises(ValueError):
directed_graph.remove_vertex(i)
def test_add_edge_exception_check(self) -> None:
(
undirected_graph,
directed_graph,
random_vertices,
random_edges,
) = self.__generate_graphs(20, 0, 100, 4)
for edge in random_edges:
with self.assertRaises(ValueError):
undirected_graph.add_edge(edge[0], edge[1])
with self.assertRaises(ValueError):
directed_graph.add_edge(edge[0], edge[1])
def test_remove_edge_exception_check(self) -> None:
(
undirected_graph,
directed_graph,
random_vertices,
random_edges,
) = self.__generate_graphs(20, 0, 100, 4)
more_random_edges: list[list[int]] = []
while len(more_random_edges) != len(random_edges):
edges: list[list[int]] = self.__generate_random_edges(random_vertices, 4)
for edge in edges:
if len(more_random_edges) == len(random_edges):
break
elif edge not in more_random_edges and edge not in random_edges:
more_random_edges.append(edge)
for edge in more_random_edges:
with self.assertRaises(ValueError):
undirected_graph.remove_edge(edge[0], edge[1])
with self.assertRaises(ValueError):
directed_graph.remove_edge(edge[0], edge[1])
def test_contains_edge_exception_check(self) -> None:
(
undirected_graph,
directed_graph,
random_vertices,
random_edges,
) = self.__generate_graphs(20, 0, 100, 4)
for vertex in random_vertices:
with self.assertRaises(ValueError):
undirected_graph.contains_edge(vertex, 102)
with self.assertRaises(ValueError):
directed_graph.contains_edge(vertex, 102)
with self.assertRaises(ValueError):
undirected_graph.contains_edge(103, 102)
with self.assertRaises(ValueError):
directed_graph.contains_edge(103, 102)
if __name__ == "__main__":
unittest.main()

View File

@ -1,608 +0,0 @@
#!/usr/bin/env python3
"""
Author: Vikram Nithyanandam
Description:
The following implementation is a robust unweighted Graph data structure
implemented using an adjacency matrix. This vertices and edges of this graph can be
effectively initialized and modified while storing your chosen generic
value in each vertex.
Adjacency Matrix: https://mathworld.wolfram.com/AdjacencyMatrix.html
Potential Future Ideas:
- Add a flag to set edge weights on and set edge weights
- Make edge weights and vertex values customizable to store whatever the client wants
- Support multigraph functionality if the client wants it
"""
from __future__ import annotations
import random
import unittest
from pprint import pformat
from typing import Generic, TypeVar
T = TypeVar("T")
class GraphAdjacencyMatrix(Generic[T]):
def __init__(
self, vertices: list[T], edges: list[list[T]], directed: bool = True
) -> None:
"""
Parameters:
- vertices: (list[T]) The list of vertex names the client wants to
pass in. Default is empty.
- edges: (list[list[T]]) The list of edges the client wants to
pass in. Each edge is a 2-element list. Default is empty.
- directed: (bool) Indicates if graph is directed or undirected.
Default is True.
"""
self.directed = directed
self.vertex_to_index: dict[T, int] = {}
self.adj_matrix: list[list[int]] = []
# Falsey checks
edges = edges or []
vertices = vertices or []
for vertex in vertices:
self.add_vertex(vertex)
for edge in edges:
if len(edge) != 2:
msg = f"Invalid input: {edge} must have length 2."
raise ValueError(msg)
self.add_edge(edge[0], edge[1])
def add_edge(self, source_vertex: T, destination_vertex: T) -> None:
"""
Creates an edge from source vertex to destination vertex. If any
given vertex doesn't exist or the edge already exists, a ValueError
will be thrown.
"""
if not (
self.contains_vertex(source_vertex)
and self.contains_vertex(destination_vertex)
):
msg = (
f"Incorrect input: Either {source_vertex} or "
f"{destination_vertex} does not exist"
)
raise ValueError(msg)
if self.contains_edge(source_vertex, destination_vertex):
msg = (
"Incorrect input: The edge already exists between "
f"{source_vertex} and {destination_vertex}"
)
raise ValueError(msg)
# Get the indices of the corresponding vertices and set their edge value to 1.
u: int = self.vertex_to_index[source_vertex]
v: int = self.vertex_to_index[destination_vertex]
self.adj_matrix[u][v] = 1
if not self.directed:
self.adj_matrix[v][u] = 1
def remove_edge(self, source_vertex: T, destination_vertex: T) -> None:
"""
Removes the edge between the two vertices. If any given vertex
doesn't exist or the edge does not exist, a ValueError will be thrown.
"""
if not (
self.contains_vertex(source_vertex)
and self.contains_vertex(destination_vertex)
):
msg = (
f"Incorrect input: Either {source_vertex} or "
f"{destination_vertex} does not exist"
)
raise ValueError(msg)
if not self.contains_edge(source_vertex, destination_vertex):
msg = (
"Incorrect input: The edge does NOT exist between "
f"{source_vertex} and {destination_vertex}"
)
raise ValueError(msg)
# Get the indices of the corresponding vertices and set their edge value to 0.
u: int = self.vertex_to_index[source_vertex]
v: int = self.vertex_to_index[destination_vertex]
self.adj_matrix[u][v] = 0
if not self.directed:
self.adj_matrix[v][u] = 0
def add_vertex(self, vertex: T) -> None:
"""
Adds a vertex to the graph. If the given vertex already exists,
a ValueError will be thrown.
"""
if self.contains_vertex(vertex):
msg = f"Incorrect input: {vertex} already exists in this graph."
raise ValueError(msg)
# build column for vertex
for row in self.adj_matrix:
row.append(0)
# build row for vertex and update other data structures
self.adj_matrix.append([0] * (len(self.adj_matrix) + 1))
self.vertex_to_index[vertex] = len(self.adj_matrix) - 1
def remove_vertex(self, vertex: T) -> None:
"""
Removes the given vertex from the graph and deletes all incoming and
outgoing edges from the given vertex as well. If the given vertex
does not exist, a ValueError will be thrown.
"""
if not self.contains_vertex(vertex):
msg = f"Incorrect input: {vertex} does not exist in this graph."
raise ValueError(msg)
# first slide up the rows by deleting the row corresponding to
# the vertex being deleted.
start_index = self.vertex_to_index[vertex]
self.adj_matrix.pop(start_index)
# next, slide the columns to the left by deleting the values in
# the column corresponding to the vertex being deleted
for lst in self.adj_matrix:
lst.pop(start_index)
# final clean up
self.vertex_to_index.pop(vertex)
# decrement indices for vertices shifted by the deleted vertex in the adj matrix
for vertex in self.vertex_to_index:
if self.vertex_to_index[vertex] >= start_index:
self.vertex_to_index[vertex] = self.vertex_to_index[vertex] - 1
def contains_vertex(self, vertex: T) -> bool:
"""
Returns True if the graph contains the vertex, False otherwise.
"""
return vertex in self.vertex_to_index
def contains_edge(self, source_vertex: T, destination_vertex: T) -> bool:
"""
Returns True if the graph contains the edge from the source_vertex to the
destination_vertex, False otherwise. If any given vertex doesn't exist, a
ValueError will be thrown.
"""
if not (
self.contains_vertex(source_vertex)
and self.contains_vertex(destination_vertex)
):
msg = (
f"Incorrect input: Either {source_vertex} "
f"or {destination_vertex} does not exist."
)
raise ValueError(msg)
u = self.vertex_to_index[source_vertex]
v = self.vertex_to_index[destination_vertex]
return self.adj_matrix[u][v] == 1
def clear_graph(self) -> None:
"""
Clears all vertices and edges.
"""
self.vertex_to_index = {}
self.adj_matrix = []
def __repr__(self) -> str:
first = "Adj Matrix:\n" + pformat(self.adj_matrix)
second = "\nVertex to index mapping:\n" + pformat(self.vertex_to_index)
return first + second
class TestGraphMatrix(unittest.TestCase):
def __assert_graph_edge_exists_check(
self,
undirected_graph: GraphAdjacencyMatrix,
directed_graph: GraphAdjacencyMatrix,
edge: list[int],
) -> None:
self.assertTrue(undirected_graph.contains_edge(edge[0], edge[1]))
self.assertTrue(undirected_graph.contains_edge(edge[1], edge[0]))
self.assertTrue(directed_graph.contains_edge(edge[0], edge[1]))
def __assert_graph_edge_does_not_exist_check(
self,
undirected_graph: GraphAdjacencyMatrix,
directed_graph: GraphAdjacencyMatrix,
edge: list[int],
) -> None:
self.assertFalse(undirected_graph.contains_edge(edge[0], edge[1]))
self.assertFalse(undirected_graph.contains_edge(edge[1], edge[0]))
self.assertFalse(directed_graph.contains_edge(edge[0], edge[1]))
def __assert_graph_vertex_exists_check(
self,
undirected_graph: GraphAdjacencyMatrix,
directed_graph: GraphAdjacencyMatrix,
vertex: int,
) -> None:
self.assertTrue(undirected_graph.contains_vertex(vertex))
self.assertTrue(directed_graph.contains_vertex(vertex))
def __assert_graph_vertex_does_not_exist_check(
self,
undirected_graph: GraphAdjacencyMatrix,
directed_graph: GraphAdjacencyMatrix,
vertex: int,
) -> None:
self.assertFalse(undirected_graph.contains_vertex(vertex))
self.assertFalse(directed_graph.contains_vertex(vertex))
def __generate_random_edges(
self, vertices: list[int], edge_pick_count: int
) -> list[list[int]]:
self.assertTrue(edge_pick_count <= len(vertices))
random_source_vertices: list[int] = random.sample(
vertices[0 : int(len(vertices) / 2)], edge_pick_count
)
random_destination_vertices: list[int] = random.sample(
vertices[int(len(vertices) / 2) :], edge_pick_count
)
random_edges: list[list[int]] = []
for source in random_source_vertices:
for dest in random_destination_vertices:
random_edges.append([source, dest])
return random_edges
def __generate_graphs(
self, vertex_count: int, min_val: int, max_val: int, edge_pick_count: int
) -> tuple[GraphAdjacencyMatrix, GraphAdjacencyMatrix, list[int], list[list[int]]]:
if max_val - min_val + 1 < vertex_count:
raise ValueError(
"Will result in duplicate vertices. Either increase "
"range between min_val and max_val or decrease vertex count"
)
# generate graph input
random_vertices: list[int] = random.sample(
range(min_val, max_val + 1), vertex_count
)
random_edges: list[list[int]] = self.__generate_random_edges(
random_vertices, edge_pick_count
)
# build graphs
undirected_graph = GraphAdjacencyMatrix(
vertices=random_vertices, edges=random_edges, directed=False
)
directed_graph = GraphAdjacencyMatrix(
vertices=random_vertices, edges=random_edges, directed=True
)
return undirected_graph, directed_graph, random_vertices, random_edges
def test_init_check(self) -> None:
(
undirected_graph,
directed_graph,
random_vertices,
random_edges,
) = self.__generate_graphs(20, 0, 100, 4)
# test graph initialization with vertices and edges
for num in random_vertices:
self.__assert_graph_vertex_exists_check(
undirected_graph, directed_graph, num
)
for edge in random_edges:
self.__assert_graph_edge_exists_check(
undirected_graph, directed_graph, edge
)
self.assertFalse(undirected_graph.directed)
self.assertTrue(directed_graph.directed)
def test_contains_vertex(self) -> None:
random_vertices: list[int] = random.sample(range(101), 20)
# Build graphs WITHOUT edges
undirected_graph = GraphAdjacencyMatrix(
vertices=random_vertices, edges=[], directed=False
)
directed_graph = GraphAdjacencyMatrix(
vertices=random_vertices, edges=[], directed=True
)
# Test contains_vertex
for num in range(101):
self.assertEqual(
num in random_vertices, undirected_graph.contains_vertex(num)
)
self.assertEqual(
num in random_vertices, directed_graph.contains_vertex(num)
)
def test_add_vertices(self) -> None:
random_vertices: list[int] = random.sample(range(101), 20)
# build empty graphs
undirected_graph: GraphAdjacencyMatrix = GraphAdjacencyMatrix(
vertices=[], edges=[], directed=False
)
directed_graph: GraphAdjacencyMatrix = GraphAdjacencyMatrix(
vertices=[], edges=[], directed=True
)
# run add_vertex
for num in random_vertices:
undirected_graph.add_vertex(num)
for num in random_vertices:
directed_graph.add_vertex(num)
# test add_vertex worked
for num in random_vertices:
self.__assert_graph_vertex_exists_check(
undirected_graph, directed_graph, num
)
def test_remove_vertices(self) -> None:
random_vertices: list[int] = random.sample(range(101), 20)
# build graphs WITHOUT edges
undirected_graph = GraphAdjacencyMatrix(
vertices=random_vertices, edges=[], directed=False
)
directed_graph = GraphAdjacencyMatrix(
vertices=random_vertices, edges=[], directed=True
)
# test remove_vertex worked
for num in random_vertices:
self.__assert_graph_vertex_exists_check(
undirected_graph, directed_graph, num
)
undirected_graph.remove_vertex(num)
directed_graph.remove_vertex(num)
self.__assert_graph_vertex_does_not_exist_check(
undirected_graph, directed_graph, num
)
def test_add_and_remove_vertices_repeatedly(self) -> None:
random_vertices1: list[int] = random.sample(range(51), 20)
random_vertices2: list[int] = random.sample(range(51, 101), 20)
# build graphs WITHOUT edges
undirected_graph = GraphAdjacencyMatrix(
vertices=random_vertices1, edges=[], directed=False
)
directed_graph = GraphAdjacencyMatrix(
vertices=random_vertices1, edges=[], directed=True
)
# test adding and removing vertices
for i, _ in enumerate(random_vertices1):
undirected_graph.add_vertex(random_vertices2[i])
directed_graph.add_vertex(random_vertices2[i])
self.__assert_graph_vertex_exists_check(
undirected_graph, directed_graph, random_vertices2[i]
)
undirected_graph.remove_vertex(random_vertices1[i])
directed_graph.remove_vertex(random_vertices1[i])
self.__assert_graph_vertex_does_not_exist_check(
undirected_graph, directed_graph, random_vertices1[i]
)
# remove all vertices
for i, _ in enumerate(random_vertices1):
undirected_graph.remove_vertex(random_vertices2[i])
directed_graph.remove_vertex(random_vertices2[i])
self.__assert_graph_vertex_does_not_exist_check(
undirected_graph, directed_graph, random_vertices2[i]
)
def test_contains_edge(self) -> None:
# generate graphs and graph input
vertex_count = 20
(
undirected_graph,
directed_graph,
random_vertices,
random_edges,
) = self.__generate_graphs(vertex_count, 0, 100, 4)
# generate all possible edges for testing
all_possible_edges: list[list[int]] = []
for i in range(vertex_count - 1):
for j in range(i + 1, vertex_count):
all_possible_edges.append([random_vertices[i], random_vertices[j]])
all_possible_edges.append([random_vertices[j], random_vertices[i]])
# test contains_edge function
for edge in all_possible_edges:
if edge in random_edges:
self.__assert_graph_edge_exists_check(
undirected_graph, directed_graph, edge
)
elif [edge[1], edge[0]] in random_edges:
# since this edge exists for undirected but the reverse may
# not exist for directed
self.__assert_graph_edge_exists_check(
undirected_graph, directed_graph, [edge[1], edge[0]]
)
else:
self.__assert_graph_edge_does_not_exist_check(
undirected_graph, directed_graph, edge
)
def test_add_edge(self) -> None:
# generate graph input
random_vertices: list[int] = random.sample(range(101), 15)
random_edges: list[list[int]] = self.__generate_random_edges(random_vertices, 4)
# build graphs WITHOUT edges
undirected_graph = GraphAdjacencyMatrix(
vertices=random_vertices, edges=[], directed=False
)
directed_graph = GraphAdjacencyMatrix(
vertices=random_vertices, edges=[], directed=True
)
# run and test add_edge
for edge in random_edges:
undirected_graph.add_edge(edge[0], edge[1])
directed_graph.add_edge(edge[0], edge[1])
self.__assert_graph_edge_exists_check(
undirected_graph, directed_graph, edge
)
def test_remove_edge(self) -> None:
# generate graph input and graphs
(
undirected_graph,
directed_graph,
random_vertices,
random_edges,
) = self.__generate_graphs(20, 0, 100, 4)
# run and test remove_edge
for edge in random_edges:
self.__assert_graph_edge_exists_check(
undirected_graph, directed_graph, edge
)
undirected_graph.remove_edge(edge[0], edge[1])
directed_graph.remove_edge(edge[0], edge[1])
self.__assert_graph_edge_does_not_exist_check(
undirected_graph, directed_graph, edge
)
def test_add_and_remove_edges_repeatedly(self) -> None:
(
undirected_graph,
directed_graph,
random_vertices,
random_edges,
) = self.__generate_graphs(20, 0, 100, 4)
# make some more edge options!
more_random_edges: list[list[int]] = []
while len(more_random_edges) != len(random_edges):
edges: list[list[int]] = self.__generate_random_edges(random_vertices, 4)
for edge in edges:
if len(more_random_edges) == len(random_edges):
break
elif edge not in more_random_edges and edge not in random_edges:
more_random_edges.append(edge)
for i, _ in enumerate(random_edges):
undirected_graph.add_edge(more_random_edges[i][0], more_random_edges[i][1])
directed_graph.add_edge(more_random_edges[i][0], more_random_edges[i][1])
self.__assert_graph_edge_exists_check(
undirected_graph, directed_graph, more_random_edges[i]
)
undirected_graph.remove_edge(random_edges[i][0], random_edges[i][1])
directed_graph.remove_edge(random_edges[i][0], random_edges[i][1])
self.__assert_graph_edge_does_not_exist_check(
undirected_graph, directed_graph, random_edges[i]
)
def test_add_vertex_exception_check(self) -> None:
(
undirected_graph,
directed_graph,
random_vertices,
random_edges,
) = self.__generate_graphs(20, 0, 100, 4)
for vertex in random_vertices:
with self.assertRaises(ValueError):
undirected_graph.add_vertex(vertex)
with self.assertRaises(ValueError):
directed_graph.add_vertex(vertex)
def test_remove_vertex_exception_check(self) -> None:
(
undirected_graph,
directed_graph,
random_vertices,
random_edges,
) = self.__generate_graphs(20, 0, 100, 4)
for i in range(101):
if i not in random_vertices:
with self.assertRaises(ValueError):
undirected_graph.remove_vertex(i)
with self.assertRaises(ValueError):
directed_graph.remove_vertex(i)
def test_add_edge_exception_check(self) -> None:
(
undirected_graph,
directed_graph,
random_vertices,
random_edges,
) = self.__generate_graphs(20, 0, 100, 4)
for edge in random_edges:
with self.assertRaises(ValueError):
undirected_graph.add_edge(edge[0], edge[1])
with self.assertRaises(ValueError):
directed_graph.add_edge(edge[0], edge[1])
def test_remove_edge_exception_check(self) -> None:
(
undirected_graph,
directed_graph,
random_vertices,
random_edges,
) = self.__generate_graphs(20, 0, 100, 4)
more_random_edges: list[list[int]] = []
while len(more_random_edges) != len(random_edges):
edges: list[list[int]] = self.__generate_random_edges(random_vertices, 4)
for edge in edges:
if len(more_random_edges) == len(random_edges):
break
elif edge not in more_random_edges and edge not in random_edges:
more_random_edges.append(edge)
for edge in more_random_edges:
with self.assertRaises(ValueError):
undirected_graph.remove_edge(edge[0], edge[1])
with self.assertRaises(ValueError):
directed_graph.remove_edge(edge[0], edge[1])
def test_contains_edge_exception_check(self) -> None:
(
undirected_graph,
directed_graph,
random_vertices,
random_edges,
) = self.__generate_graphs(20, 0, 100, 4)
for vertex in random_vertices:
with self.assertRaises(ValueError):
undirected_graph.contains_edge(vertex, 102)
with self.assertRaises(ValueError):
directed_graph.contains_edge(vertex, 102)
with self.assertRaises(ValueError):
undirected_graph.contains_edge(103, 102)
with self.assertRaises(ValueError):
directed_graph.contains_edge(103, 102)
if __name__ == "__main__":
unittest.main()

24
graphs/graph_matrix.py Normal file
View File

@ -0,0 +1,24 @@
class Graph:
def __init__(self, vertex):
self.vertex = vertex
self.graph = [[0] * vertex for i in range(vertex)]
def add_edge(self, u, v):
self.graph[u - 1][v - 1] = 1
self.graph[v - 1][u - 1] = 1
def show(self):
for i in self.graph:
for j in i:
print(j, end=" ")
print(" ")
g = Graph(100)
g.add_edge(1, 4)
g.add_edge(4, 2)
g.add_edge(4, 5)
g.add_edge(2, 5)
g.add_edge(5, 3)
g.show()

View File

@ -58,8 +58,8 @@ class Node:
The heuristic here is the Manhattan Distance
Could elaborate to offer more than one choice
"""
dx = abs(self.pos_x - self.goal_x)
dy = abs(self.pos_y - self.goal_y)
dy = abs(self.pos_x - self.goal_x)
dx = abs(self.pos_y - self.goal_y)
return dx + dy
def __lt__(self, other) -> bool:

View File

@ -1,48 +0,0 @@
"""
Calculate the minimum waiting time using a greedy algorithm.
reference: https://www.youtube.com/watch?v=Sf3eiO12eJs
For doctests run following command:
python -m doctest -v minimum_waiting_time.py
The minimum_waiting_time function uses a greedy algorithm to calculate the minimum
time for queries to complete. It sorts the list in non-decreasing order, calculates
the waiting time for each query by multiplying its position in the list with the
sum of all remaining query times, and returns the total waiting time. A doctest
ensures that the function produces the correct output.
"""
def minimum_waiting_time(queries: list[int]) -> int:
"""
This function takes a list of query times and returns the minimum waiting time
for all queries to be completed.
Args:
queries: A list of queries measured in picoseconds
Returns:
total_waiting_time: Minimum waiting time measured in picoseconds
Examples:
>>> minimum_waiting_time([3, 2, 1, 2, 6])
17
>>> minimum_waiting_time([3, 2, 1])
4
>>> minimum_waiting_time([1, 2, 3, 4])
10
>>> minimum_waiting_time([5, 5, 5, 5])
30
>>> minimum_waiting_time([])
0
"""
n = len(queries)
if n in (0, 1):
return 0
return sum(query * (n - i - 1) for i, query in enumerate(sorted(queries)))
if __name__ == "__main__":
import doctest
doctest.testmod()

View File

@ -43,43 +43,62 @@ def points_to_polynomial(coordinates: list[list[int]]) -> str:
x = len(coordinates)
count_of_line = 0
matrix: list[list[float]] = []
# put the x and x to the power values in a matrix
matrix: list[list[float]] = [
[
coordinates[count_of_line][0] ** (x - (count_in_line + 1))
for count_in_line in range(x)
]
for count_of_line in range(x)
]
while count_of_line < x:
count_in_line = 0
a = coordinates[count_of_line][0]
count_line: list[float] = []
while count_in_line < x:
count_line.append(a ** (x - (count_in_line + 1)))
count_in_line += 1
matrix.append(count_line)
count_of_line += 1
count_of_line = 0
# put the y values into a vector
vector: list[float] = [coordinates[count_of_line][1] for count_of_line in range(x)]
vector: list[float] = []
while count_of_line < x:
vector.append(coordinates[count_of_line][1])
count_of_line += 1
for count in range(x):
for number in range(x):
if count == number:
continue
fraction = matrix[number][count] / matrix[count][count]
count = 0
while count < x:
zahlen = 0
while zahlen < x:
if count == zahlen:
zahlen += 1
if zahlen == x:
break
bruch = matrix[zahlen][count] / matrix[count][count]
for counting_columns, item in enumerate(matrix[count]):
# manipulating all the values in the matrix
matrix[number][counting_columns] -= item * fraction
matrix[zahlen][counting_columns] -= item * bruch
# manipulating the values in the vector
vector[number] -= vector[count] * fraction
vector[zahlen] -= vector[count] * bruch
zahlen += 1
count += 1
count = 0
# make solutions
solution: list[str] = [
str(vector[count] / matrix[count][count]) for count in range(x)
]
solution: list[str] = []
while count < x:
solution.append(str(vector[count] / matrix[count][count]))
count += 1
count = 0
solved = "f(x)="
for count in range(x):
while count < x:
remove_e: list[str] = solution[count].split("E")
if len(remove_e) > 1:
solution[count] = f"{remove_e[0]}*10^{remove_e[1]}"
solved += f"x^{x - (count + 1)}*{solution[count]}"
if count + 1 != x:
solved += "+"
count += 1
return solved

View File

@ -1,89 +0,0 @@
"""
Calculate the rank of a matrix.
See: https://en.wikipedia.org/wiki/Rank_(linear_algebra)
"""
def rank_of_matrix(matrix: list[list[int | float]]) -> int:
"""
Finds the rank of a matrix.
Args:
matrix: The matrix as a list of lists.
Returns:
The rank of the matrix.
Example:
>>> matrix1 = [[1, 2, 3],
... [4, 5, 6],
... [7, 8, 9]]
>>> rank_of_matrix(matrix1)
2
>>> matrix2 = [[1, 0, 0],
... [0, 1, 0],
... [0, 0, 0]]
>>> rank_of_matrix(matrix2)
2
>>> matrix3 = [[1, 2, 3, 4],
... [5, 6, 7, 8],
... [9, 10, 11, 12]]
>>> rank_of_matrix(matrix3)
2
>>> rank_of_matrix([[2,3,-1,-1],
... [1,-1,-2,4],
... [3,1,3,-2],
... [6,3,0,-7]])
4
>>> rank_of_matrix([[2,1,-3,-6],
... [3,-3,1,2],
... [1,1,1,2]])
3
>>> rank_of_matrix([[2,-1,0],
... [1,3,4],
... [4,1,-3]])
3
>>> rank_of_matrix([[3,2,1],
... [-6,-4,-2]])
1
>>> rank_of_matrix([[],[]])
0
>>> rank_of_matrix([[1]])
1
>>> rank_of_matrix([[]])
0
"""
rows = len(matrix)
columns = len(matrix[0])
rank = min(rows, columns)
for row in range(rank):
# Check if diagonal element is not zero
if matrix[row][row] != 0:
# Eliminate all the elements below the diagonal
for col in range(row + 1, rows):
multiplier = matrix[col][row] / matrix[row][row]
for i in range(row, columns):
matrix[col][i] -= multiplier * matrix[row][i]
else:
# Find a non-zero diagonal element to swap rows
reduce = True
for i in range(row + 1, rows):
if matrix[i][row] != 0:
matrix[row], matrix[i] = matrix[i], matrix[row]
reduce = False
break
if reduce:
rank -= 1
for i in range(rows):
matrix[i][row] = matrix[i][rank]
# Reduce the row pointer by one to stay on the same row
row -= 1
return rank
if __name__ == "__main__":
import doctest
doctest.testmod()

View File

@ -31,18 +31,16 @@ def schur_complement(
shape_c = np.shape(mat_c)
if shape_a[0] != shape_b[0]:
msg = (
"Expected the same number of rows for A and B. "
f"Instead found A of size {shape_a} and B of size {shape_b}"
raise ValueError(
f"Expected the same number of rows for A and B. \
Instead found A of size {shape_a} and B of size {shape_b}"
)
raise ValueError(msg)
if shape_b[1] != shape_c[1]:
msg = (
"Expected the same number of columns for B and C. "
f"Instead found B of size {shape_b} and C of size {shape_c}"
raise ValueError(
f"Expected the same number of columns for B and C. \
Instead found B of size {shape_b} and C of size {shape_c}"
)
raise ValueError(msg)
a_inv = pseudo_inv
if a_inv is None:

View File

@ -1,311 +0,0 @@
"""
Python implementation of the simplex algorithm for solving linear programs in
tabular form with
- `>=`, `<=`, and `=` constraints and
- each variable `x1, x2, ...>= 0`.
See https://gist.github.com/imengus/f9619a568f7da5bc74eaf20169a24d98 for how to
convert linear programs to simplex tableaus, and the steps taken in the simplex
algorithm.
Resources:
https://en.wikipedia.org/wiki/Simplex_algorithm
https://tinyurl.com/simplex4beginners
"""
from typing import Any
import numpy as np
class Tableau:
"""Operate on simplex tableaus
>>> t = Tableau(np.array([[-1,-1,0,0,-1],[1,3,1,0,4],[3,1,0,1,4.]]), 2)
Traceback (most recent call last):
...
ValueError: RHS must be > 0
"""
def __init__(self, tableau: np.ndarray, n_vars: int) -> None:
# Check if RHS is negative
if np.any(tableau[:, -1], where=tableau[:, -1] < 0):
raise ValueError("RHS must be > 0")
self.tableau = tableau
self.n_rows, _ = tableau.shape
# Number of decision variables x1, x2, x3...
self.n_vars = n_vars
# Number of artificial variables to be minimised
self.n_art_vars = len(np.where(tableau[self.n_vars : -1] == -1)[0])
# 2 if there are >= or == constraints (nonstandard), 1 otherwise (std)
self.n_stages = (self.n_art_vars > 0) + 1
# Number of slack variables added to make inequalities into equalities
self.n_slack = self.n_rows - self.n_stages
# Objectives for each stage
self.objectives = ["max"]
# In two stage simplex, first minimise then maximise
if self.n_art_vars:
self.objectives.append("min")
self.col_titles = [""]
# Index of current pivot row and column
self.row_idx = None
self.col_idx = None
# Does objective row only contain (non)-negative values?
self.stop_iter = False
@staticmethod
def generate_col_titles(*args: int) -> list[str]:
"""Generate column titles for tableau of specific dimensions
>>> Tableau.generate_col_titles(2, 3, 1)
['x1', 'x2', 's1', 's2', 's3', 'a1', 'RHS']
>>> Tableau.generate_col_titles()
Traceback (most recent call last):
...
ValueError: Must provide n_vars, n_slack, and n_art_vars
>>> Tableau.generate_col_titles(-2, 3, 1)
Traceback (most recent call last):
...
ValueError: All arguments must be non-negative integers
"""
if len(args) != 3:
raise ValueError("Must provide n_vars, n_slack, and n_art_vars")
if not all(x >= 0 and isinstance(x, int) for x in args):
raise ValueError("All arguments must be non-negative integers")
# decision | slack | artificial
string_starts = ["x", "s", "a"]
titles = []
for i in range(3):
for j in range(args[i]):
titles.append(string_starts[i] + str(j + 1))
titles.append("RHS")
return titles
def find_pivot(self, tableau: np.ndarray) -> tuple[Any, Any]:
"""Finds the pivot row and column.
>>> t = Tableau(np.array([[-2,1,0,0,0], [3,1,1,0,6], [1,2,0,1,7.]]), 2)
>>> t.find_pivot(t.tableau)
(1, 0)
"""
objective = self.objectives[-1]
# Find entries of highest magnitude in objective rows
sign = (objective == "min") - (objective == "max")
col_idx = np.argmax(sign * tableau[0, : self.n_vars])
# Choice is only valid if below 0 for maximise, and above for minimise
if sign * self.tableau[0, col_idx] <= 0:
self.stop_iter = True
return 0, 0
# Pivot row is chosen as having the lowest quotient when elements of
# the pivot column divide the right-hand side
# Slice excluding the objective rows
s = slice(self.n_stages, self.n_rows)
# RHS
dividend = tableau[s, -1]
# Elements of pivot column within slice
divisor = tableau[s, col_idx]
# Array filled with nans
nans = np.full(self.n_rows - self.n_stages, np.nan)
# If element in pivot column is greater than zeron_stages, return
# quotient or nan otherwise
quotients = np.divide(dividend, divisor, out=nans, where=divisor > 0)
# Arg of minimum quotient excluding the nan values. n_stages is added
# to compensate for earlier exclusion of objective columns
row_idx = np.nanargmin(quotients) + self.n_stages
return row_idx, col_idx
def pivot(self, tableau: np.ndarray, row_idx: int, col_idx: int) -> np.ndarray:
"""Pivots on value on the intersection of pivot row and column.
>>> t = Tableau(np.array([[-2,-3,0,0,0],[1,3,1,0,4],[3,1,0,1,4.]]), 2)
>>> t.pivot(t.tableau, 1, 0).tolist()
... # doctest: +NORMALIZE_WHITESPACE
[[0.0, 3.0, 2.0, 0.0, 8.0],
[1.0, 3.0, 1.0, 0.0, 4.0],
[0.0, -8.0, -3.0, 1.0, -8.0]]
"""
# Avoid changes to original tableau
piv_row = tableau[row_idx].copy()
piv_val = piv_row[col_idx]
# Entry becomes 1
piv_row *= 1 / piv_val
# Variable in pivot column becomes basic, ie the only non-zero entry
for idx, coeff in enumerate(tableau[:, col_idx]):
tableau[idx] += -coeff * piv_row
tableau[row_idx] = piv_row
return tableau
def change_stage(self, tableau: np.ndarray) -> np.ndarray:
"""Exits first phase of the two-stage method by deleting artificial
rows and columns, or completes the algorithm if exiting the standard
case.
>>> t = Tableau(np.array([
... [3, 3, -1, -1, 0, 0, 4],
... [2, 1, 0, 0, 0, 0, 0.],
... [1, 2, -1, 0, 1, 0, 2],
... [2, 1, 0, -1, 0, 1, 2]
... ]), 2)
>>> t.change_stage(t.tableau).tolist()
... # doctest: +NORMALIZE_WHITESPACE
[[2.0, 1.0, 0.0, 0.0, 0.0, 0.0],
[1.0, 2.0, -1.0, 0.0, 1.0, 2.0],
[2.0, 1.0, 0.0, -1.0, 0.0, 2.0]]
"""
# Objective of original objective row remains
self.objectives.pop()
if not self.objectives:
return tableau
# Slice containing ids for artificial columns
s = slice(-self.n_art_vars - 1, -1)
# Delete the artificial variable columns
tableau = np.delete(tableau, s, axis=1)
# Delete the objective row of the first stage
tableau = np.delete(tableau, 0, axis=0)
self.n_stages = 1
self.n_rows -= 1
self.n_art_vars = 0
self.stop_iter = False
return tableau
def run_simplex(self) -> dict[Any, Any]:
"""Operate on tableau until objective function cannot be
improved further.
# Standard linear program:
Max: x1 + x2
ST: x1 + 3x2 <= 4
3x1 + x2 <= 4
>>> Tableau(np.array([[-1,-1,0,0,0],[1,3,1,0,4],[3,1,0,1,4.]]),
... 2).run_simplex()
{'P': 2.0, 'x1': 1.0, 'x2': 1.0}
# Optimal tableau input:
>>> Tableau(np.array([
... [0, 0, 0.25, 0.25, 2],
... [0, 1, 0.375, -0.125, 1],
... [1, 0, -0.125, 0.375, 1]
... ]), 2).run_simplex()
{'P': 2.0, 'x1': 1.0, 'x2': 1.0}
# Non-standard: >= constraints
Max: 2x1 + 3x2 + x3
ST: x1 + x2 + x3 <= 40
2x1 + x2 - x3 >= 10
- x2 + x3 >= 10
>>> Tableau(np.array([
... [2, 0, 0, 0, -1, -1, 0, 0, 20],
... [-2, -3, -1, 0, 0, 0, 0, 0, 0],
... [1, 1, 1, 1, 0, 0, 0, 0, 40],
... [2, 1, -1, 0, -1, 0, 1, 0, 10],
... [0, -1, 1, 0, 0, -1, 0, 1, 10.]
... ]), 3).run_simplex()
{'P': 70.0, 'x1': 10.0, 'x2': 10.0, 'x3': 20.0}
# Non standard: minimisation and equalities
Min: x1 + x2
ST: 2x1 + x2 = 12
6x1 + 5x2 = 40
>>> Tableau(np.array([
... [8, 6, 0, -1, 0, -1, 0, 0, 52],
... [1, 1, 0, 0, 0, 0, 0, 0, 0],
... [2, 1, 1, 0, 0, 0, 0, 0, 12],
... [2, 1, 0, -1, 0, 0, 1, 0, 12],
... [6, 5, 0, 0, 1, 0, 0, 0, 40],
... [6, 5, 0, 0, 0, -1, 0, 1, 40.]
... ]), 2).run_simplex()
{'P': 7.0, 'x1': 5.0, 'x2': 2.0}
"""
# Stop simplex algorithm from cycling.
for _ in range(100):
# Completion of each stage removes an objective. If both stages
# are complete, then no objectives are left
if not self.objectives:
self.col_titles = self.generate_col_titles(
self.n_vars, self.n_slack, self.n_art_vars
)
# Find the values of each variable at optimal solution
return self.interpret_tableau(self.tableau, self.col_titles)
row_idx, col_idx = self.find_pivot(self.tableau)
# If there are no more negative values in objective row
if self.stop_iter:
# Delete artificial variable columns and rows. Update attributes
self.tableau = self.change_stage(self.tableau)
else:
self.tableau = self.pivot(self.tableau, row_idx, col_idx)
return {}
def interpret_tableau(
self, tableau: np.ndarray, col_titles: list[str]
) -> dict[str, float]:
"""Given the final tableau, add the corresponding values of the basic
decision variables to the `output_dict`
>>> tableau = np.array([
... [0,0,0.875,0.375,5],
... [0,1,0.375,-0.125,1],
... [1,0,-0.125,0.375,1]
... ])
>>> t = Tableau(tableau, 2)
>>> t.interpret_tableau(tableau, ["x1", "x2", "s1", "s2", "RHS"])
{'P': 5.0, 'x1': 1.0, 'x2': 1.0}
"""
# P = RHS of final tableau
output_dict = {"P": abs(tableau[0, -1])}
for i in range(self.n_vars):
# Gives ids of nonzero entries in the ith column
nonzero = np.nonzero(tableau[:, i])
n_nonzero = len(nonzero[0])
# First entry in the nonzero ids
nonzero_rowidx = nonzero[0][0]
nonzero_val = tableau[nonzero_rowidx, i]
# If there is only one nonzero value in column, which is one
if n_nonzero == nonzero_val == 1:
rhs_val = tableau[nonzero_rowidx, -1]
output_dict[col_titles[i]] = rhs_val
# Check for basic variables
for title in col_titles:
# Don't add RHS or slack variables to output dict
if title[0] not in "R-s-a":
output_dict.setdefault(title, 0)
return output_dict
if __name__ == "__main__":
import doctest
doctest.testmod()

View File

@ -1,4 +1,4 @@
total_users,total_events,days
total_user,total_events,days
18231,0.0,1
22621,1.0,2
15675,0.0,3

1 total_users total_user total_events days
2 18231 0.0 1
3 22621 1.0 2
4 15675 0.0 3

View File

@ -1,6 +1,6 @@
"""
this is code for forecasting
but I modified it and used it for safety checker of data
but i modified it and used it for safety checker of data
for ex: you have an online shop and for some reason some data are
missing (the amount of data that u expected are not supposed to be)
then we can use it
@ -11,8 +11,6 @@ missing (the amount of data that u expected are not supposed to be)
u can just adjust it for ur own purpose
"""
from warnings import simplefilter
import numpy as np
import pandas as pd
from sklearn.preprocessing import Normalizer
@ -47,10 +45,8 @@ def sarimax_predictor(train_user: list, train_match: list, test_match: list) ->
>>> sarimax_predictor([4,2,6,8], [3,1,2,4], [2])
6.6666671111109626
"""
# Suppress the User Warning raised by SARIMAX due to insufficient observations
simplefilter("ignore", UserWarning)
order = (1, 2, 1)
seasonal_order = (1, 1, 1, 7)
seasonal_order = (1, 1, 0, 7)
model = SARIMAX(
train_user, exog=train_match, order=order, seasonal_order=seasonal_order
)
@ -106,10 +102,6 @@ def data_safety_checker(list_vote: list, actual_result: float) -> bool:
"""
safe = 0
not_safe = 0
if not isinstance(actual_result, float):
raise TypeError("Actual result should be float. Value passed is a list")
for i in list_vote:
if i > actual_result:
safe = not_safe + 1
@ -122,11 +114,16 @@ def data_safety_checker(list_vote: list, actual_result: float) -> bool:
if __name__ == "__main__":
# data_input_df = pd.read_csv("ex_data.csv", header=None)
data_input = [[18231, 0.0, 1], [22621, 1.0, 2], [15675, 0.0, 3], [23583, 1.0, 4]]
data_input_df = pd.DataFrame(
data_input, columns=["total_user", "total_even", "days"]
)
"""
data column = total user in a day, how much online event held in one day,
what day is that(sunday-saturday)
"""
data_input_df = pd.read_csv("ex_data.csv")
# start normalization
normalize_df = Normalizer().fit_transform(data_input_df.values)
@ -141,23 +138,23 @@ if __name__ == "__main__":
x_test = x[len(x) - 1 :]
# for linear regression & sarimax
train_date = total_date[: len(total_date) - 1]
train_user = total_user[: len(total_user) - 1]
train_match = total_match[: len(total_match) - 1]
trn_date = total_date[: len(total_date) - 1]
trn_user = total_user[: len(total_user) - 1]
trn_match = total_match[: len(total_match) - 1]
test_date = total_date[len(total_date) - 1 :]
test_user = total_user[len(total_user) - 1 :]
test_match = total_match[len(total_match) - 1 :]
tst_date = total_date[len(total_date) - 1 :]
tst_user = total_user[len(total_user) - 1 :]
tst_match = total_match[len(total_match) - 1 :]
# voting system with forecasting
res_vote = [
linear_regression_prediction(
train_date, train_user, train_match, test_date, test_match
trn_date, trn_user, trn_match, tst_date, tst_match
),
sarimax_predictor(train_user, train_match, test_match),
support_vector_regressor(x_train, x_test, train_user),
sarimax_predictor(trn_user, trn_match, tst_match),
support_vector_regressor(x_train, x_test, trn_user),
]
# check the safety of today's data
not_str = "" if data_safety_checker(res_vote, test_user[0]) else "not "
print(f"Today's data is {not_str}safe.")
not_str = "" if data_safety_checker(res_vote, tst_user) else "not "
print("Today's data is {not_str}safe.")

View File

@ -399,7 +399,7 @@ def main():
if input("Press any key to restart or 'q' for quit: ").strip().lower() == "q":
print("\n" + "GoodBye!".center(100, "-") + "\n")
break
system("cls" if name == "nt" else "clear") # noqa: S605
system("cls" if name == "nt" else "clear")
if __name__ == "__main__":

View File

@ -1,55 +1,14 @@
"""
Locally weighted linear regression, also called local regression, is a type of
non-parametric linear regression that prioritizes data closest to a given
prediction point. The algorithm estimates the vector of model coefficients β
using weighted least squares regression:
β = (XᵀWX)¹(XᵀWy),
where X is the design matrix, y is the response vector, and W is the diagonal
weight matrix.
This implementation calculates wᵢ, the weight of the ith training sample, using
the Gaussian weight:
wᵢ = exp(-xᵢ - x²/(2τ²)),
where xᵢ is the ith training sample, x is the prediction point, τ is the
"bandwidth", and x is the Euclidean norm (also called the 2-norm or the
norm). The bandwidth τ controls how quickly the weight of a training sample
decreases as its distance from the prediction point increases. One can think of
the Gaussian weight as a bell curve centered around the prediction point: a
training sample is weighted lower if it's farther from the center, and τ
controls the spread of the bell curve.
Other types of locally weighted regression such as locally estimated scatterplot
smoothing (LOESS) typically use different weight functions.
References:
- https://en.wikipedia.org/wiki/Local_regression
- https://en.wikipedia.org/wiki/Weighted_least_squares
- https://cs229.stanford.edu/notes2022fall/main_notes.pdf
"""
import matplotlib.pyplot as plt
import numpy as np
def weight_matrix(point: np.ndarray, x_train: np.ndarray, tau: float) -> np.ndarray:
def weighted_matrix(
point: np.array, training_data_x: np.array, bandwidth: float
) -> np.array:
"""
Calculate the weight of every point in the training data around a given
prediction point
Args:
point: x-value at which the prediction is being made
x_train: ndarray of x-values for training
tau: bandwidth value, controls how quickly the weight of training values
decreases as the distance from the prediction point increases
Returns:
m x m weight matrix around the prediction point, where m is the size of
the training set
>>> weight_matrix(
Calculate the weight for every point in the data set.
point --> the x value at which we want to make predictions
>>> weighted_matrix(
... np.array([1., 1.]),
... np.array([[16.99, 10.34], [21.01,23.68], [24.59,25.69]]),
... 0.6
@ -58,30 +17,25 @@ def weight_matrix(point: np.ndarray, x_train: np.ndarray, tau: float) -> np.ndar
[0.00000000e+000, 0.00000000e+000, 0.00000000e+000],
[0.00000000e+000, 0.00000000e+000, 0.00000000e+000]])
"""
m = len(x_train) # Number of training samples
weights = np.eye(m) # Initialize weights as identity matrix
for j in range(m):
diff = point - x_train[j]
weights[j, j] = np.exp(diff @ diff.T / (-2.0 * tau**2))
m, _ = np.shape(training_data_x) # m is the number of training samples
weights = np.eye(m) # Initializing weights as identity matrix
# calculating weights for all training examples [x(i)'s]
for j in range(m):
diff = point - training_data_x[j]
weights[j, j] = np.exp(diff @ diff.T / (-2.0 * bandwidth**2))
return weights
def local_weight(
point: np.ndarray, x_train: np.ndarray, y_train: np.ndarray, tau: float
) -> np.ndarray:
point: np.array,
training_data_x: np.array,
training_data_y: np.array,
bandwidth: float,
) -> np.array:
"""
Calculate the local weights at a given prediction point using the weight
matrix for that point
Args:
point: x-value at which the prediction is being made
x_train: ndarray of x-values for training
y_train: ndarray of y-values for training
tau: bandwidth value, controls how quickly the weight of training values
decreases as the distance from the prediction point increases
Returns:
ndarray of local weights
Calculate the local weights using the weight_matrix function on training data.
Return the weighted matrix.
>>> local_weight(
... np.array([1., 1.]),
... np.array([[16.99, 10.34], [21.01,23.68], [24.59,25.69]]),
@ -91,28 +45,19 @@ def local_weight(
array([[0.00873174],
[0.08272556]])
"""
weight_mat = weight_matrix(point, x_train, tau)
weight = np.linalg.inv(x_train.T @ weight_mat @ x_train) @ (
x_train.T @ weight_mat @ y_train.T
weight = weighted_matrix(point, training_data_x, bandwidth)
w = np.linalg.inv(training_data_x.T @ (weight @ training_data_x)) @ (
training_data_x.T @ weight @ training_data_y.T
)
return weight
return w
def local_weight_regression(
x_train: np.ndarray, y_train: np.ndarray, tau: float
) -> np.ndarray:
training_data_x: np.array, training_data_y: np.array, bandwidth: float
) -> np.array:
"""
Calculate predictions for each point in the training data
Args:
x_train: ndarray of x-values for training
y_train: ndarray of y-values for training
tau: bandwidth value, controls how quickly the weight of training values
decreases as the distance from the prediction point increases
Returns:
ndarray of predictions
Calculate predictions for each data point on axis
>>> local_weight_regression(
... np.array([[16.99, 10.34], [21.01, 23.68], [24.59, 25.69]]),
... np.array([[1.01, 1.66, 3.5]]),
@ -120,57 +65,77 @@ def local_weight_regression(
... )
array([1.07173261, 1.65970737, 3.50160179])
"""
y_pred = np.zeros(len(x_train)) # Initialize array of predictions
for i, item in enumerate(x_train):
y_pred[i] = item @ local_weight(item, x_train, y_train, tau)
m, _ = np.shape(training_data_x)
ypred = np.zeros(m)
return y_pred
for i, item in enumerate(training_data_x):
ypred[i] = item @ local_weight(
item, training_data_x, training_data_y, bandwidth
)
return ypred
def load_data(
dataset_name: str, x_name: str, y_name: str
) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
dataset_name: str, cola_name: str, colb_name: str
) -> tuple[np.array, np.array, np.array, np.array]:
"""
Load data from seaborn and split it into x and y points
>>> pass # No doctests, function is for demo purposes only
"""
import seaborn as sns
data = sns.load_dataset(dataset_name)
x_data = np.array(data[x_name])
y_data = np.array(data[y_name])
col_a = np.array(data[cola_name]) # total_bill
col_b = np.array(data[colb_name]) # tip
one = np.ones(len(y_data))
mcol_a = col_a.copy()
mcol_b = col_b.copy()
# pairing elements of one and x_data
x_train = np.column_stack((one, x_data))
one = np.ones(np.shape(mcol_b)[0], dtype=int)
return x_train, x_data, y_data
# pairing elements of one and mcol_a
training_data_x = np.column_stack((one, mcol_a))
return training_data_x, mcol_b, col_a, col_b
def get_preds(training_data_x: np.array, mcol_b: np.array, tau: float) -> np.array:
"""
Get predictions with minimum error for each training data
>>> get_preds(
... np.array([[16.99, 10.34], [21.01, 23.68], [24.59, 25.69]]),
... np.array([[1.01, 1.66, 3.5]]),
... 0.6
... )
array([1.07173261, 1.65970737, 3.50160179])
"""
ypred = local_weight_regression(training_data_x, mcol_b, tau)
return ypred
def plot_preds(
x_train: np.ndarray,
preds: np.ndarray,
x_data: np.ndarray,
y_data: np.ndarray,
x_name: str,
y_name: str,
) -> None:
training_data_x: np.array,
predictions: np.array,
col_x: np.array,
col_y: np.array,
cola_name: str,
colb_name: str,
) -> plt.plot:
"""
Plot predictions and display the graph
>>> pass # No doctests, function is for demo purposes only
"""
x_train_sorted = np.sort(x_train, axis=0)
plt.scatter(x_data, y_data, color="blue")
xsort = training_data_x.copy()
xsort.sort(axis=0)
plt.scatter(col_x, col_y, color="blue")
plt.plot(
x_train_sorted[:, 1],
preds[x_train[:, 1].argsort(0)],
xsort[:, 1],
predictions[training_data_x[:, 1].argsort(0)],
color="yellow",
linewidth=5,
)
plt.title("Local Weighted Regression")
plt.xlabel(x_name)
plt.ylabel(y_name)
plt.xlabel(cola_name)
plt.ylabel(colb_name)
plt.show()
@ -179,7 +144,6 @@ if __name__ == "__main__":
doctest.testmod()
# Demo with a dataset from the seaborn module
training_data_x, total_bill, tip = load_data("tips", "total_bill", "tip")
predictions = local_weight_regression(training_data_x, tip, 5)
plot_preds(training_data_x, predictions, total_bill, tip, "total_bill", "tip")
training_data_x, mcol_b, col_a, col_b = load_data("tips", "total_bill", "tip")
predictions = get_preds(training_data_x, mcol_b, 0.5)
plot_preds(training_data_x, predictions, col_a, col_b, "total_bill", "tip")

Some files were not shown because too many files have changed in this diff Show More