mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-23 21:11:08 +00:00
Compare commits
3 Commits
46979a3b44
...
c503f046e8
Author | SHA1 | Date | |
---|---|---|---|
|
c503f046e8 | ||
|
f3f32ae3ca | ||
|
24666d3cd7 |
|
@ -16,7 +16,7 @@ repos:
|
|||
- id: auto-walrus
|
||||
|
||||
- repo: https://github.com/astral-sh/ruff-pre-commit
|
||||
rev: v0.7.3
|
||||
rev: v0.7.4
|
||||
hooks:
|
||||
- id: ruff
|
||||
- id: ruff-format
|
||||
|
|
|
@ -37,7 +37,13 @@ Usage:
|
|||
heterogeneity,
|
||||
k
|
||||
)
|
||||
5. Transfers Dataframe into excel format it must have feature called
|
||||
5. 3D Plot of the labeled data points with centroids.
|
||||
plot_kmeans(
|
||||
X,
|
||||
centroids,
|
||||
cluster_assignment
|
||||
)
|
||||
6. Transfers Dataframe into excel format it must have feature called
|
||||
'Clust' with k means clustering numbers in it.
|
||||
"""
|
||||
|
||||
|
@ -126,6 +132,19 @@ def plot_heterogeneity(heterogeneity, k):
|
|||
plt.show()
|
||||
|
||||
|
||||
def plot_kmeans(data, centroids, cluster_assignment):
|
||||
ax = plt.axes(projection="3d")
|
||||
ax.scatter(data[:, 0], data[:, 1], data[:, 2], c=cluster_assignment, cmap="viridis")
|
||||
ax.scatter(
|
||||
centroids[:, 0], centroids[:, 1], centroids[:, 2], c="red", s=100, marker="x"
|
||||
)
|
||||
ax.set_xlabel("X")
|
||||
ax.set_ylabel("Y")
|
||||
ax.set_zlabel("Z")
|
||||
ax.set_title("3D K-Means Clustering Visualization")
|
||||
plt.show()
|
||||
|
||||
|
||||
def kmeans(
|
||||
data, k, initial_centroids, maxiter=500, record_heterogeneity=None, verbose=False
|
||||
):
|
||||
|
@ -193,6 +212,7 @@ if False: # change to true to run this test case.
|
|||
verbose=True,
|
||||
)
|
||||
plot_heterogeneity(heterogeneity, k)
|
||||
plot_kmeans(dataset["data"], centroids, cluster_assignment)
|
||||
|
||||
|
||||
def report_generator(
|
||||
|
|
Loading…
Reference in New Issue
Block a user