Compare commits

...

5 Commits

Author SHA1 Message Date
Maxim Smolskiy
f66568e981
Reduce the complexity of boolean_algebra/quine_mc_cluskey.py (#8604)
* Reduce the complexity of boolean_algebra/quine_mc_cluskey.py

* updating DIRECTORY.md

* Fix

* Fix review issues

* Fix

* Fix review issues

---------

Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
2023-08-15 16:10:22 -07:00
isidroas
efaf526737
BST and RSA doctest (#8693)
* rsa key doctest

* move doctest to module docstring

* all tests to doctest

* moved is_right to property

* is right test

* fixed rsa doctest import

* Test error when deleting non-existing element

* fixing ruff EM102

* convert property 'is_right' to one-liner

Also use 'is' instead of '=='

Co-authored-by: Tianyi Zheng <tianyizheng02@gmail.com>

* child instead of children

Co-authored-by: Tianyi Zheng <tianyizheng02@gmail.com>

* remove type hint

* Update data_structures/binary_tree/binary_search_tree.py

---------

Co-authored-by: Tianyi Zheng <tianyizheng02@gmail.com>
2023-08-15 16:04:53 -07:00
Juyoung Kim
cecf1fdd52
Fix greedy_best_first (#8775)
* fix: typo
#8770

* refactor: delete unnecessary continue

* add test grids

* fix: add \_\_eq\_\_ in Node class
#8770

* fix: delete unnecessary code
- node in self.open_nodes is always better node
#8770

* fix: docstring

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix: docstring max length

* refactor: get the successors using a list comprehension

* Apply suggestions from code review

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Tianyi Zheng <tianyizheng02@gmail.com>
2023-08-15 15:52:51 -07:00
Caeden Perelli-Harris
490e645ed3
Fix minor typing errors in maths/ (#8959)
* updating DIRECTORY.md

* types(maths): Fix pylance issues in maths

* reset(vsc): Reset settings changes

* Update maths/jaccard_similarity.py

Co-authored-by: Tianyi Zheng <tianyizheng02@gmail.com>

* revert(erosion_operation): Revert erosion_operation

* test(jaccard_similarity): Add doctest to test alternative_union

* types(newton_raphson): Add typehints to func bodies

---------

Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
Co-authored-by: Tianyi Zheng <tianyizheng02@gmail.com>
2023-08-15 14:27:41 -07:00
Erfan Alimohammadi
7618a92fee
Remove a slash in path to save the file correctly on Linux (#8053) 2023-08-15 16:37:49 -04:00
15 changed files with 252 additions and 202 deletions

View File

@ -74,10 +74,7 @@ def is_for_table(string1: str, string2: str, count: int) -> bool:
"""
list1 = list(string1)
list2 = list(string2)
count_n = 0
for i in range(len(list1)):
if list1[i] != list2[i]:
count_n += 1
count_n = sum(item1 != item2 for item1, item2 in zip(list1, list2))
return count_n == count
@ -92,40 +89,34 @@ def selection(chart: list[list[int]], prime_implicants: list[str]) -> list[str]:
temp = []
select = [0] * len(chart)
for i in range(len(chart[0])):
count = 0
rem = -1
for j in range(len(chart)):
if chart[j][i] == 1:
count += 1
rem = j
count = sum(row[i] == 1 for row in chart)
if count == 1:
rem = max(j for j, row in enumerate(chart) if row[i] == 1)
select[rem] = 1
for i in range(len(select)):
if select[i] == 1:
for j in range(len(chart[0])):
if chart[i][j] == 1:
for k in range(len(chart)):
chart[k][j] = 0
temp.append(prime_implicants[i])
for i, item in enumerate(select):
if item != 1:
continue
for j in range(len(chart[0])):
if chart[i][j] != 1:
continue
for row in chart:
row[j] = 0
temp.append(prime_implicants[i])
while True:
max_n = 0
rem = -1
count_n = 0
for i in range(len(chart)):
count_n = chart[i].count(1)
if count_n > max_n:
max_n = count_n
rem = i
counts = [chart[i].count(1) for i in range(len(chart))]
max_n = max(counts)
rem = counts.index(max_n)
if max_n == 0:
return temp
temp.append(prime_implicants[rem])
for i in range(len(chart[0])):
if chart[rem][i] == 1:
for j in range(len(chart)):
chart[j][i] = 0
for j in range(len(chart[0])):
if chart[rem][j] != 1:
continue
for i in range(len(chart)):
chart[i][j] = 0
def prime_implicant_chart(

View File

@ -2,8 +2,7 @@ import os
import random
import sys
from . import cryptomath_module as cryptoMath # noqa: N812
from . import rabin_miller as rabinMiller # noqa: N812
from . import cryptomath_module, rabin_miller
def main() -> None:
@ -13,20 +12,26 @@ def main() -> None:
def generate_key(key_size: int) -> tuple[tuple[int, int], tuple[int, int]]:
print("Generating prime p...")
p = rabinMiller.generate_large_prime(key_size)
print("Generating prime q...")
q = rabinMiller.generate_large_prime(key_size)
"""
>>> random.seed(0) # for repeatability
>>> public_key, private_key = generate_key(8)
>>> public_key
(26569, 239)
>>> private_key
(26569, 2855)
"""
p = rabin_miller.generate_large_prime(key_size)
q = rabin_miller.generate_large_prime(key_size)
n = p * q
print("Generating e that is relatively prime to (p - 1) * (q - 1)...")
# Generate e that is relatively prime to (p - 1) * (q - 1)
while True:
e = random.randrange(2 ** (key_size - 1), 2 ** (key_size))
if cryptoMath.gcd(e, (p - 1) * (q - 1)) == 1:
if cryptomath_module.gcd(e, (p - 1) * (q - 1)) == 1:
break
print("Calculating d that is mod inverse of e...")
d = cryptoMath.find_mod_inverse(e, (p - 1) * (q - 1))
# Calculate d that is mod inverse of e
d = cryptomath_module.find_mod_inverse(e, (p - 1) * (q - 1))
public_key = (n, e)
private_key = (n, d)

View File

@ -32,13 +32,13 @@ def main() -> None:
letter_code = random_chars(32)
file_name = paths[index].split(os.sep)[-1].rsplit(".", 1)[0]
file_root = f"{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}"
cv2.imwrite(f"/{file_root}.jpg", image, [cv2.IMWRITE_JPEG_QUALITY, 85])
cv2.imwrite(f"{file_root}.jpg", image, [cv2.IMWRITE_JPEG_QUALITY, 85])
print(f"Success {index+1}/{len(new_images)} with {file_name}")
annos_list = []
for anno in new_annos[index]:
obj = f"{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}"
annos_list.append(obj)
with open(f"/{file_root}.txt", "w") as outfile:
with open(f"{file_root}.txt", "w") as outfile:
outfile.write("\n".join(line for line in annos_list))

View File

@ -1,5 +1,62 @@
"""
r"""
A binary search Tree
Example
8
/ \
3 10
/ \ \
1 6 14
/ \ /
4 7 13
>>> t = BinarySearchTree()
>>> t.insert(8, 3, 6, 1, 10, 14, 13, 4, 7)
>>> print(" ".join(repr(i.value) for i in t.traversal_tree()))
8 3 1 6 4 7 10 14 13
>>> print(" ".join(repr(i.value) for i in t.traversal_tree(postorder)))
1 4 7 6 3 13 14 10 8
>>> t.remove(20)
Traceback (most recent call last):
...
ValueError: Value 20 not found
>>> BinarySearchTree().search(6)
Traceback (most recent call last):
...
IndexError: Warning: Tree is empty! please use another.
Other example:
>>> testlist = (8, 3, 6, 1, 10, 14, 13, 4, 7)
>>> t = BinarySearchTree()
>>> for i in testlist:
... t.insert(i)
Prints all the elements of the list in order traversal
>>> print(t)
{'8': ({'3': (1, {'6': (4, 7)})}, {'10': (None, {'14': (13, None)})})}
Test existence
>>> t.search(6) is not None
True
>>> t.search(-1) is not None
False
>>> t.search(6).is_right
True
>>> t.search(1).is_right
False
>>> t.get_max().value
14
>>> t.get_min().value
1
>>> t.empty()
False
>>> for i in testlist:
... t.remove(i)
>>> t.empty()
True
"""
from collections.abc import Iterable
@ -20,6 +77,10 @@ class Node:
return str(self.value)
return pformat({f"{self.value}": (self.left, self.right)}, indent=1)
@property
def is_right(self) -> bool:
return self.parent is not None and self is self.parent.right
class BinarySearchTree:
def __init__(self, root: Node | None = None):
@ -35,18 +96,13 @@ class BinarySearchTree:
if new_children is not None: # reset its kids
new_children.parent = node.parent
if node.parent is not None: # reset its parent
if self.is_right(node): # If it is the right children
if node.is_right: # If it is the right child
node.parent.right = new_children
else:
node.parent.left = new_children
else:
self.root = new_children
def is_right(self, node: Node) -> bool:
if node.parent and node.parent.right:
return node == node.parent.right
return False
def empty(self) -> bool:
return self.root is None
@ -119,22 +175,26 @@ class BinarySearchTree:
return node
def remove(self, value: int) -> None:
node = self.search(value) # Look for the node with that label
if node is not None:
if node.left is None and node.right is None: # If it has no children
self.__reassign_nodes(node, None)
elif node.left is None: # Has only right children
self.__reassign_nodes(node, node.right)
elif node.right is None: # Has only left children
self.__reassign_nodes(node, node.left)
else:
tmp_node = self.get_max(
node.left
) # Gets the max value of the left branch
self.remove(tmp_node.value) # type: ignore
node.value = (
tmp_node.value # type: ignore
) # Assigns the value to the node to delete and keep tree structure
# Look for the node with that label
node = self.search(value)
if node is None:
msg = f"Value {value} not found"
raise ValueError(msg)
if node.left is None and node.right is None: # If it has no children
self.__reassign_nodes(node, None)
elif node.left is None: # Has only right children
self.__reassign_nodes(node, node.right)
elif node.right is None: # Has only left children
self.__reassign_nodes(node, node.left)
else:
predecessor = self.get_max(
node.left
) # Gets the max value of the left branch
self.remove(predecessor.value) # type: ignore
node.value = (
predecessor.value # type: ignore
) # Assigns the value to the node to delete and keep tree structure
def preorder_traverse(self, node: Node | None) -> Iterable:
if node is not None:
@ -177,55 +237,6 @@ def postorder(curr_node: Node | None) -> list[Node]:
return node_list
def binary_search_tree() -> None:
r"""
Example
8
/ \
3 10
/ \ \
1 6 14
/ \ /
4 7 13
>>> t = BinarySearchTree()
>>> t.insert(8, 3, 6, 1, 10, 14, 13, 4, 7)
>>> print(" ".join(repr(i.value) for i in t.traversal_tree()))
8 3 1 6 4 7 10 14 13
>>> print(" ".join(repr(i.value) for i in t.traversal_tree(postorder)))
1 4 7 6 3 13 14 10 8
>>> BinarySearchTree().search(6)
Traceback (most recent call last):
...
IndexError: Warning: Tree is empty! please use another.
"""
testlist = (8, 3, 6, 1, 10, 14, 13, 4, 7)
t = BinarySearchTree()
for i in testlist:
t.insert(i)
# Prints all the elements of the list in order traversal
print(t)
if t.search(6) is not None:
print("The value 6 exists")
else:
print("The value 6 doesn't exist")
if t.search(-1) is not None:
print("The value -1 exists")
else:
print("The value -1 doesn't exist")
if not t.empty():
print("Max Value: ", t.get_max().value) # type: ignore
print("Min Value: ", t.get_min().value) # type: ignore
for i in testlist:
t.remove(i)
print(t)
if __name__ == "__main__":
import doctest

View File

@ -21,6 +21,7 @@ def rgb2gray(rgb: np.array) -> np.array:
def gray2binary(gray: np.array) -> np.array:
"""
Return binary image from gray image
>>> gray2binary(np.array([[127, 255, 0]]))
array([[False, True, False]])
>>> gray2binary(np.array([[0]]))

View File

@ -10,12 +10,12 @@ def get_rotation(
) -> np.ndarray:
"""
Get image rotation
:param img: np.array
:param img: np.ndarray
:param pt1: 3x2 list
:param pt2: 3x2 list
:param rows: columns image shape
:param cols: rows image shape
:return: np.array
:return: np.ndarray
"""
matrix = cv2.getAffineTransform(pt1, pt2)
return cv2.warpAffine(img, matrix, (rows, cols))

View File

@ -6,14 +6,32 @@ from __future__ import annotations
Path = list[tuple[int, int]]
grid = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
# 0's are free path whereas 1's are obstacles
TEST_GRIDS = [
[
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
],
[
[0, 0, 0, 1, 1, 0, 0],
[0, 0, 0, 0, 1, 0, 1],
[0, 0, 0, 1, 1, 0, 0],
[0, 1, 0, 0, 1, 0, 0],
[1, 0, 0, 1, 1, 0, 1],
[0, 0, 0, 0, 0, 0, 0],
],
[
[0, 0, 1, 0, 0],
[0, 1, 0, 0, 0],
[0, 0, 1, 0, 1],
[1, 0, 0, 1, 1],
[0, 0, 0, 0, 0],
],
]
delta = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right
@ -65,10 +83,14 @@ class Node:
def __lt__(self, other) -> bool:
return self.f_cost < other.f_cost
def __eq__(self, other) -> bool:
return self.pos == other.pos
class GreedyBestFirst:
"""
>>> gbf = GreedyBestFirst((0, 0), (len(grid) - 1, len(grid[0]) - 1))
>>> grid = TEST_GRIDS[2]
>>> gbf = GreedyBestFirst(grid, (0, 0), (len(grid) - 1, len(grid[0]) - 1))
>>> [x.pos for x in gbf.get_successors(gbf.start)]
[(1, 0), (0, 1)]
>>> (gbf.start.pos_y + delta[3][0], gbf.start.pos_x + delta[3][1])
@ -78,11 +100,14 @@ class GreedyBestFirst:
>>> gbf.retrace_path(gbf.start)
[(0, 0)]
>>> gbf.search() # doctest: +NORMALIZE_WHITESPACE
[(0, 0), (1, 0), (2, 0), (3, 0), (3, 1), (4, 1), (5, 1), (6, 1),
(6, 2), (6, 3), (5, 3), (5, 4), (5, 5), (6, 5), (6, 6)]
[(0, 0), (1, 0), (2, 0), (2, 1), (3, 1), (4, 1), (4, 2), (4, 3),
(4, 4)]
"""
def __init__(self, start: tuple[int, int], goal: tuple[int, int]):
def __init__(
self, grid: list[list[int]], start: tuple[int, int], goal: tuple[int, int]
):
self.grid = grid
self.start = Node(start[1], start[0], goal[1], goal[0], 0, None)
self.target = Node(goal[1], goal[0], goal[1], goal[0], 99999, None)
@ -114,14 +139,6 @@ class GreedyBestFirst:
if child_node not in self.open_nodes:
self.open_nodes.append(child_node)
else:
# retrieve the best current path
better_node = self.open_nodes.pop(self.open_nodes.index(child_node))
if child_node.g_cost < better_node.g_cost:
self.open_nodes.append(child_node)
else:
self.open_nodes.append(better_node)
if not self.reached:
return [self.start.pos]
@ -131,28 +148,22 @@ class GreedyBestFirst:
"""
Returns a list of successors (both in the grid and free spaces)
"""
successors = []
for action in delta:
pos_x = parent.pos_x + action[1]
pos_y = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0]) - 1 and 0 <= pos_y <= len(grid) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(
pos_x,
pos_y,
self.target.pos_y,
self.target.pos_x,
parent.g_cost + 1,
parent,
)
return [
Node(
pos_x,
pos_y,
self.target.pos_x,
self.target.pos_y,
parent.g_cost + 1,
parent,
)
return successors
for action in delta
if (
0 <= (pos_x := parent.pos_x + action[1]) < len(self.grid[0])
and 0 <= (pos_y := parent.pos_y + action[0]) < len(self.grid)
and self.grid[pos_y][pos_x] == 0
)
]
def retrace_path(self, node: Node | None) -> Path:
"""
@ -168,18 +179,21 @@ class GreedyBestFirst:
if __name__ == "__main__":
init = (0, 0)
goal = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
print("------")
greedy_bf = GreedyBestFirst(init, goal)
path = greedy_bf.search()
if path:
for pos_x, pos_y in path:
grid[pos_x][pos_y] = 2
for idx, grid in enumerate(TEST_GRIDS):
print(f"==grid-{idx + 1}==")
init = (0, 0)
goal = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
print("------")
greedy_bf = GreedyBestFirst(grid, init, goal)
path = greedy_bf.search()
if path:
for pos_x, pos_y in path:
grid[pos_x][pos_y] = 2
for elem in grid:
print(elem)

View File

@ -19,7 +19,9 @@ def median(nums: list) -> int | float:
Returns:
Median.
"""
sorted_list = sorted(nums)
# The sorted function returns list[SupportsRichComparisonT@sorted]
# which does not support `+`
sorted_list: list[int] = sorted(nums)
length = len(sorted_list)
mid_index = length >> 1
return (

View File

@ -5,7 +5,7 @@ import numpy as np
def euler_modified(
ode_func: Callable, y0: float, x0: float, step_size: float, x_end: float
) -> np.array:
) -> np.ndarray:
"""
Calculate solution at each step to an ODE using Euler's Modified Method
The Euler Method is straightforward to implement, but can't give accurate solutions.

View File

@ -13,7 +13,7 @@ This script is inspired by a corresponding research paper.
import numpy as np
def sigmoid(vector: np.array) -> np.array:
def sigmoid(vector: np.ndarray) -> np.ndarray:
"""
Mathematical function sigmoid takes a vector x of K real numbers as input and
returns 1/ (1 + e^-x).
@ -25,7 +25,7 @@ def sigmoid(vector: np.array) -> np.array:
return 1 / (1 + np.exp(-vector))
def gaussian_error_linear_unit(vector: np.array) -> np.array:
def gaussian_error_linear_unit(vector: np.ndarray) -> np.ndarray:
"""
Implements the Gaussian Error Linear Unit (GELU) function

View File

@ -14,7 +14,11 @@ Jaccard similarity is widely used with MinHashing.
"""
def jaccard_similarity(set_a, set_b, alternative_union=False):
def jaccard_similarity(
set_a: set[str] | list[str] | tuple[str],
set_b: set[str] | list[str] | tuple[str],
alternative_union=False,
):
"""
Finds the jaccard similarity between two sets.
Essentially, its intersection over union.
@ -37,41 +41,52 @@ def jaccard_similarity(set_a, set_b, alternative_union=False):
>>> set_b = {'c', 'd', 'e', 'f', 'h', 'i'}
>>> jaccard_similarity(set_a, set_b)
0.375
>>> jaccard_similarity(set_a, set_a)
1.0
>>> jaccard_similarity(set_a, set_a, True)
0.5
>>> set_a = ['a', 'b', 'c', 'd', 'e']
>>> set_b = ('c', 'd', 'e', 'f', 'h', 'i')
>>> jaccard_similarity(set_a, set_b)
0.375
>>> set_a = ('c', 'd', 'e', 'f', 'h', 'i')
>>> set_b = ['a', 'b', 'c', 'd', 'e']
>>> jaccard_similarity(set_a, set_b)
0.375
>>> set_a = ('c', 'd', 'e', 'f', 'h', 'i')
>>> set_b = ['a', 'b', 'c', 'd']
>>> jaccard_similarity(set_a, set_b, True)
0.2
>>> set_a = {'a', 'b'}
>>> set_b = ['c', 'd']
>>> jaccard_similarity(set_a, set_b)
Traceback (most recent call last):
...
ValueError: Set a and b must either both be sets or be either a list or a tuple.
"""
if isinstance(set_a, set) and isinstance(set_b, set):
intersection = len(set_a.intersection(set_b))
intersection_length = len(set_a.intersection(set_b))
if alternative_union:
union = len(set_a) + len(set_b)
union_length = len(set_a) + len(set_b)
else:
union = len(set_a.union(set_b))
union_length = len(set_a.union(set_b))
return intersection / union
return intersection_length / union_length
if isinstance(set_a, (list, tuple)) and isinstance(set_b, (list, tuple)):
elif isinstance(set_a, (list, tuple)) and isinstance(set_b, (list, tuple)):
intersection = [element for element in set_a if element in set_b]
if alternative_union:
union = len(set_a) + len(set_b)
return len(intersection) / union
return len(intersection) / (len(set_a) + len(set_b))
else:
union = set_a + [element for element in set_b if element not in set_a]
# Cast set_a to list because tuples cannot be mutated
union = list(set_a) + [element for element in set_b if element not in set_a]
return len(intersection) / len(union)
return len(intersection) / len(union)
return None
raise ValueError(
"Set a and b must either both be sets or be either a list or a tuple."
)
if __name__ == "__main__":

View File

@ -1,16 +1,20 @@
"""
Author: P Shreyas Shetty
Implementation of Newton-Raphson method for solving equations of kind
f(x) = 0. It is an iterative method where solution is found by the expression
x[n+1] = x[n] + f(x[n])/f'(x[n])
If no solution exists, then either the solution will not be found when iteration
limit is reached or the gradient f'(x[n]) approaches zero. In both cases, exception
is raised. If iteration limit is reached, try increasing maxiter.
"""
Author: P Shreyas Shetty
Implementation of Newton-Raphson method for solving equations of kind
f(x) = 0. It is an iterative method where solution is found by the expression
x[n+1] = x[n] + f(x[n])/f'(x[n])
If no solution exists, then either the solution will not be found when iteration
limit is reached or the gradient f'(x[n]) approaches zero. In both cases, exception
is raised. If iteration limit is reached, try increasing maxiter.
"""
import math as m
from collections.abc import Callable
DerivativeFunc = Callable[[float], float]
def calc_derivative(f, a, h=0.001):
def calc_derivative(f: DerivativeFunc, a: float, h: float = 0.001) -> float:
"""
Calculates derivative at point a for function f using finite difference
method
@ -18,7 +22,14 @@ def calc_derivative(f, a, h=0.001):
return (f(a + h) - f(a - h)) / (2 * h)
def newton_raphson(f, x0=0, maxiter=100, step=0.0001, maxerror=1e-6, logsteps=False):
def newton_raphson(
f: DerivativeFunc,
x0: float = 0,
maxiter: int = 100,
step: float = 0.0001,
maxerror: float = 1e-6,
logsteps: bool = False,
) -> tuple[float, float, list[float]]:
a = x0 # set the initial guess
steps = [a]
error = abs(f(a))
@ -36,7 +47,7 @@ def newton_raphson(f, x0=0, maxiter=100, step=0.0001, maxerror=1e-6, logsteps=Fa
if logsteps:
# If logstep is true, then log intermediate steps
return a, error, steps
return a, error
return a, error, []
if __name__ == "__main__":

View File

@ -1,7 +1,7 @@
import numpy as np
def qr_householder(a):
def qr_householder(a: np.ndarray):
"""Return a QR-decomposition of the matrix A using Householder reflection.
The QR-decomposition decomposes the matrix A of shape (m, n) into an

View File

@ -11,7 +11,7 @@ https://en.wikipedia.org/wiki/Sigmoid_function
import numpy as np
def sigmoid(vector: np.array) -> np.array:
def sigmoid(vector: np.ndarray) -> np.ndarray:
"""
Implements the sigmoid function

View File

@ -12,12 +12,12 @@ https://en.wikipedia.org/wiki/Activation_function
import numpy as np
def tangent_hyperbolic(vector: np.array) -> np.array:
def tangent_hyperbolic(vector: np.ndarray) -> np.ndarray:
"""
Implements the tanh function
Parameters:
vector: np.array
vector: np.ndarray
Returns:
tanh (np.array): The input numpy array after applying tanh.