Compare commits

..

No commits in common. "90748c86aa3dcb9d9292ed5469426fffc0d90ba0" and "0e72de66a51b8e629a80c961b29206b317662ef5" have entirely different histories.

View File

@ -1,10 +1,10 @@
"""
An implementation of interquartile range (IQR) which is a measure of statistical
dispersion, which is the spread of the data.
This is the implementation of inter_quartile range (IQR).
The function takes the list of numeric values as input and returns the IQR.
function takes the list of numeric values as input
and return the IQR as output.
Script inspired by this Wikipedia article:
Script inspired from its corresponding Wikipedia article
https://en.wikipedia.org/wiki/Interquartile_range
"""
from __future__ import annotations
@ -12,47 +12,52 @@ from __future__ import annotations
def find_median(nums: list[int | float]) -> float:
"""
This is the implementation of the median.
This is the implementation of median.
:param nums: The list of numeric nums
:return: Median of the list
>>> find_median(nums=([1, 2, 2, 3, 4]))
>>> find_median(nums=([1,2,2,3,4]))
2
>>> find_median(nums=([1, 2, 2, 3, 4, 4]))
>>> find_median(nums=([1,2,2,3,4,4]))
2.5
>>> find_median(nums=([-1, 2, 0, 3, 4, -4]))
1.5
>>> find_median(nums=([1.1, 2.2, 2, 3.3, 4.4, 4]))
2.65
"""
div, mod = divmod(len(nums), 2)
if mod:
return nums[div]
return (nums[div] + nums[(div) - 1]) / 2
length = len(nums)
if length % 2:
return nums[length // 2]
return float((nums[length // 2] + nums[(length // 2) - 1]) / 2)
def interquartile_range(nums: list[int | float]) -> float:
"""
Return the interquartile range for a list of numeric values.
:param nums: The list of numeric values.
:return: interquartile range
This is the implementation of inter_quartile
range for a list of numeric.
:param nums: The list of data point
:return: Inter_quartile range
>>> interquartile_range(nums=[4, 1, 2, 3, 2])
>>> interquartile_range(nums=[4,1,2,3,2])
2.0
>>> interquartile_range(nums = [-2, -7, -10, 9, 8, 4, -67, 45])
17.0
>>> interquartile_range(nums = [-2.1, -7.1, -10.1, 9.1, 8.1, 4.1, -67.1, 45.1])
17.2
>>> interquartile_range(nums = [0, 0, 0, 0, 0])
0.0
>>> interquartile_range(nums=[])
Traceback (most recent call last):
...
ValueError: The list is empty. Provide a non-empty list.
>>> interquartile_range(nums = [-2,-7,-10,9,8,4, -67, 45])
17.0
>>> interquartile_range(nums = [0,0,0,0,0])
0.0
"""
if not nums:
length = len(nums)
if length == 0:
raise ValueError("The list is empty. Provide a non-empty list.")
nums.sort()
length = len(nums)
div, mod = divmod(length, 2)
q1 = find_median(nums[:div])
half_length = sum((div, mod))