Compare commits

..

3 Commits

Author SHA1 Message Date
Nihal K P
2b07c42a99 fixed doctest failed cases 2023-08-14 19:32:22 +05:30
Nihal K P
f84031096c Fixed failing doctests 2023-08-14 19:22:46 +05:30
Nihal K P
896c1b1fb1 reformatted according to recommended changes 2023-08-14 19:11:09 +05:30

View File

@ -8,64 +8,6 @@ References :
https://en.wikipedia.org/wiki/Quantum_logic_gate
Book : Mathematics Of Quantum Computing An Introduction by Wolfgang Scherer
Glossary ;
input_realvalue : the magnitude of the real part of the input complex number.
input_imaginaryvalue : the magnitude of the imaginary part of the input complex number.
In cases which require 2 inputs the input is named with a suffix of 1 and 2
(Eg. input_realvalue_1)
alpha : angle of rotation as represented by the block sphere.
iota : The exponential complex of alpha value.
nx_value : value of vector in X axis as represented by Hilbert space.
nx_value : value of vector in Y axis as represented by Hilbert space.
nx_value : value of vector in Z axis as represented by Hilbert space.
* The nx,ny and nz values can also be considered as values of vectors along
the respective axes on the bloch sphere.
Usage :
>>> paulix_gate(2,3)
[3 2]
>>> pauliy_gate(5,8)
[0.+8.j 0.-5.j]
>>> pauliz_gate(4,1)
[ 4 -1]
>>> identity_gate(7,2)
9
>>> phasefactor_of_input(4,7,45)
[1.39737084e+20+0.j 2.44539897e+20+0.j]
>>> phaseshift_of_input(3,9,30)
[3.00000000e+00+0.j 9.61782712e+13+0.j]
>>> hadamard_gate(5,9)
[ 9.89949494 -2.82842712]
[1.+0.j 0.+0.j 0.+0.j 7.+0.j]
>>> controlled_not_gate_in_0ket(1,7,4,8)
[7 1 4 8]
>>> controlled_not_gate(6,3,7,5)
[6 3 5 7]
>>> inverted_controlled_not_gate(8,4,9,6)
[8 6 9 4]
>>> controlled_phase_multiplication(3,2,5,1,10)
[3.00000000e+00+0.j 2.00000000e+00+0.j 1.10132329e+05+0.j
2.20264658e+04+0.j]
>>> swap_gate(5,1,3,7)
[5 3 1 7]
>>> spin_of_input(6,3,45,1,8,3)
[-16.93201614+10.23066476j -50.61991392 -1.46152354j]
"""
import cmath
@ -74,14 +16,38 @@ import math
import numpy as np
def paulix_gate(input_realvalue, input_imaginaryvalue):
def paulix_gate(input_realvalue: float, input_imaginaryvalue: float) -> list[float]:
"""
Glossary :
input_realvalue : the magnitude of the real part of the input complex number.
input_imaginaryvalue : the magnitude of the imaginary part
of the input complex number.
In cases which require 2 inputs the input is named with a suffix of 1 and 2
(Eg. input_realvalue_1)
Usage :
>>> paulix_gate(2,3)
array([3, 2])
"""
paulix_matrix = np.array([[0, 1], [1, 0]])
complex_input = np.array([input_realvalue, input_imaginaryvalue])
result = np.dot(paulix_matrix, complex_input)
return result
def pauliy_gate(input_realvalue, input_imaginaryvalue):
def pauliy_gate(input_realvalue: float, input_imaginaryvalue: float) -> list[float]:
"""
Glossary :
input_realvalue : the magnitude of the real part of the input complex number.
input_imaginaryvalue : the magnitude of the imaginary part
of the input complex number.
In cases which require 2 inputs the input is named with a suffix of 1 and 2
(Eg. input_realvalue_1)
Usage :
>>> pauliy_gate(5,8)
array([0.+8.j, 0.-5.j])
"""
i = complex(0, 1)
pauliy_matrix = [[0, i], [-1 * i, 0]]
complex_input = np.array([input_realvalue, input_imaginaryvalue])
@ -89,21 +55,61 @@ def pauliy_gate(input_realvalue, input_imaginaryvalue):
return result
def pauliz_gate(input_realvalue, input_imaginaryvalue):
def pauliz_gate(input_realvalue: float, input_imaginaryvalue: float) -> list[float]:
"""
Glossary :
input_realvalue : the magnitude of the real part of the input complex number.
input_imaginaryvalue : the magnitude
of the imaginary part of the input complex number.
In cases which require 2 inputs the input is named with a suffix of 1 and 2
(Eg. input_realvalue_1)
Usage :
>>> pauliz_gate(4,1)
array([ 4, -1])
"""
pauliz_matrix = np.array([[1, 0], [0, -1]])
complex_input = np.array([input_realvalue, input_imaginaryvalue])
result = np.dot(pauliz_matrix, complex_input)
return result
def identity_gate(input_realvalue, input_imaginaryvalue):
def identity_gate(input_realvalue: float, input_imaginaryvalue: float) -> float:
"""
Glossary :
input_realvalue : the magnitude of the real part of the input complex number.
input_imaginaryvalue : the magnitude of the imaginary part
of the input complex number.
In cases which require 2 inputs the input is named with a suffix of 1 and 2
(Eg. input_realvalue_1)
Usage :
>>> identity_gate(7,2)
9
"""
identiy_matrix = np.diag([[1, 0], [0, 1]])
complex_input = np.array([input_realvalue, input_imaginaryvalue])
result = np.dot(identiy_matrix, complex_input)
return result
def phasefactor_of_input(input_realvalue, input_imaginaryvalue, alpha):
def phasefactor_of_input(
input_realvalue: float, input_imaginaryvalue: float, alpha: float
) -> list[float]:
"""
Glossary :
alpha : angle of rotation as represented by the block sphere.
iota : The exponential complex of alpha value.
input_realvalue : the magnitude of the real part of the input complex number.
input_imaginaryvalue : the magnitude of the imaginary part
of the input complex number.
In cases which require 2 inputs the input is named with a suffix of 1 and 2
(Eg. input_realvalue_1)
Usage :
>>> phasefactor_of_input(4,7,45)
array([1.39737084e+20+0.j, 2.44539897e+20+0.j])
"""
iota = cmath.exp(alpha)
phasefactor = [[iota, 0], [0, iota]]
complex_input = np.array([input_realvalue, input_imaginaryvalue])
@ -111,7 +117,23 @@ def phasefactor_of_input(input_realvalue, input_imaginaryvalue, alpha):
return result
def phaseshift_of_input(input_realvalue, input_imaginaryvalue, alpha):
def phaseshift_of_input(
input_realvalue: float, input_imaginaryvalue: float, alpha: float
) -> list[float]:
"""
Glossary :
alpha : angle of rotation as represented by the block sphere.
iota : The exponential complex of alpha value.
input_realvalue : the magnitude of the real part of the input complex number.
input_imaginaryvalue : the magnitude of the imaginary part
of the input complex number.
In cases which require 2 inputs the input is named with a suffix of 1 and 2
(Eg. input_realvalue_1)
Usage :
>>> phaseshift_of_input(3,9,30)
array([3.00000000e+00+0.j, 9.61782712e+13+0.j])
"""
iota = cmath.exp(alpha)
phase = [[1, 0], [0, iota]]
complex_input = np.array([input_realvalue, input_imaginaryvalue])
@ -119,7 +141,19 @@ def phaseshift_of_input(input_realvalue, input_imaginaryvalue, alpha):
return result
def hadamard_gate(input_realvalue, input_imaginaryvalue):
def hadamard_gate(input_realvalue: float, input_imaginaryvalue: float) -> list[float]:
"""
Glossary :
input_realvalue : the magnitude of the real part of the input complex number.
input_imaginaryvalue : the magnitude of the imaginary part
of the input complex number.
In cases which require 2 inputs the input is named with a suffix of 1 and 2
(Eg. input_realvalue_1)
Usage :
>>> hadamard_gate(5,9)
array([ 9.89949494, -2.82842712])
"""
root_of_2 = 1.0 / math.sqrt(2)
hadamard_gate_matrix = np.array(
[[root_of_2, root_of_2], [root_of_2, -1 * root_of_2]]
@ -130,8 +164,24 @@ def hadamard_gate(input_realvalue, input_imaginaryvalue):
def controlled_not_gate_in_0ket(
input_realvalue_1, input_imaginaryvalue_1, input_realvalue_2, input_imaginaryvalue_2
):
input_realvalue_1: float,
input_imaginaryvalue_1: float,
input_realvalue_2: float,
input_imaginaryvalue_2: float,
) -> list[float]:
"""
Glossary :
input_realvalue : the magnitude of the real part of the input complex number.
input_imaginaryvalue : the magnitude of the imaginary part
of the input complex number.
In cases which require 2 inputs the input is named with a suffix of 1 and 2
(Eg. input_realvalue_1)
Usage :
>>> controlled_not_gate_in_0ket(1,7,4,8)
[1 7 4 8]
array([7, 1, 4, 8])
"""
controlled_not_gate_0ket_matrix = np.array(
[[0, 1, 0, 0], [1, 0, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]
)
@ -149,8 +199,23 @@ def controlled_not_gate_in_0ket(
def controlled_not_gate(
input_realvalue_1, input_imaginaryvalue_1, input_realvalue_2, input_imaginaryvalue_2
):
input_realvalue_1: float,
input_imaginaryvalue_1: float,
input_realvalue_2: float,
input_imaginaryvalue_2: float,
) -> list[float]:
"""
Glossary :
input_realvalue : the magnitude of the real part of the input complex number.
input_imaginaryvalue : the magnitude of the imaginary part
of the input complex number.
In cases which require 2 inputs the input is named with a suffix of 1 and 2
(Eg. input_realvalue_1)
Usage :
>>> controlled_not_gate(6,3,7,5)
array([6, 3, 5, 7])
"""
controlled_not_gate_matrix = np.array(
[[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0]]
)
@ -167,8 +232,23 @@ def controlled_not_gate(
def inverted_controlled_not_gate(
input_realvalue_1, input_imaginaryvalue_1, input_realvalue_2, input_imaginaryvalue_2
):
input_realvalue_1: float,
input_imaginaryvalue_1: float,
input_realvalue_2: float,
input_imaginaryvalue_2: float,
) -> list[float]:
"""
Glossary :
input_realvalue : the magnitude of the real part of the input complex number.
input_imaginaryvalue : the magnitude of the imaginary part
of the input complex number.
In cases which require 2 inputs the input is named with a suffix of 1 and 2
(Eg. input_realvalue_1)
Usage :
>>> inverted_controlled_not_gate(8,4,9,6)
array([8, 6, 9, 4])
"""
inverted_controlled_not_gate_matrix = np.array(
[[1, 0, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0], [0, 1, 0, 0]]
)
@ -185,12 +265,27 @@ def inverted_controlled_not_gate(
def controlled_phase_multiplication(
input_realvalue_1,
input_imaginaryvalue_1,
input_realvalue_2,
input_imaginaryvalue_2,
alpha,
):
input_realvalue_1: float,
input_imaginaryvalue_1: float,
input_realvalue_2: float,
input_imaginaryvalue_2: float,
alpha: float,
) -> list[float]:
"""
Glossary :
alpha : angle of rotation as represented by the block sphere.
iota : The exponential complex of alpha value.
input_realvalue : the magnitude of the real part of the input complex number.
input_imaginaryvalue : the magnitude of the imaginary part
of the input complex number.
In cases which require 2 inputs the input is named with a suffix of 1 and 2
(Eg. input_realvalue_1)
Usage :
>>> controlled_phase_multiplication(3,2,5,1,10)
array([3.00000000e+00+0.j, 2.00000000e+00+0.j, 1.10132329e+05+0.j,
2.20264658e+04+0.j])
"""
iota = cmath.exp(alpha)
controlled_phase_multiplication_matrix = np.array(
[[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, iota, 0], [0, 0, 0, iota]]
@ -208,8 +303,23 @@ def controlled_phase_multiplication(
def swap_gate(
input_realvalue_1, input_imaginaryvalue_1, input_realvalue_2, input_imaginaryvalue_2
):
input_realvalue_1: float,
input_imaginaryvalue_1: float,
input_realvalue_2: float,
input_imaginaryvalue_2: float,
) -> list[float]:
"""
Glossary :
input_realvalue : the magnitude of the real part of the input complex number.
input_imaginaryvalue : the magnitude of the imaginary part
of the input complex number.
In cases which require 2 inputs the input is named with a suffix of 1 and 2
(Eg. input_realvalue_1)
Usage :
>>> swap_gate(5,1,3,7)
array([5, 3, 1, 7])
"""
swap_gate_matrix = np.array(
[[1, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 0, 1]]
)
@ -226,8 +336,28 @@ def swap_gate(
def spin_of_input(
input_realvalue, input_imaginaryvalue, alpha_value, nx_value, ny_value, nz_value
):
input_realvalue: float,
input_imaginaryvalue: float,
alpha_value: float,
nx_value: float,
ny_value: float,
nz_value: float,
) -> list[float]:
"""
Glossary :
alpha : angle of rotation as represented by the block sphere.
iota : The exponential complex of alpha value.
nx_value : value of vector in X axis as represented by Hilbert space.
nx_value : value of vector in Y axis as represented by Hilbert space.
nx_value : value of vector in Z axis as represented by Hilbert space.
* The nx,ny and nz values can also be considered as values of vectors along
the respective axes on the bloch sphere.
Usage :
>>> spin_of_input(6,3,45,1,8,3)
array([-16.93201614+10.23066476j, -50.61991392 -1.46152354j])
"""
i = complex(0, 1)
spin_matrix = [
[