""" Lanczos Method for Finding Eigenvalues and Eigenvectors of a Graph. This module demonstrates the Lanczos method to approximate the largest eigenvalues and corresponding eigenvectors of a symmetric matrix represented as a graph's adjacency list. The method efficiently handles large, sparse matrices by converting the graph to a tridiagonal matrix, whose eigenvalues and eigenvectors are then computed. Key Functions: - `find_lanczos_eigenvectors`: Computes the k largest eigenvalues and vectors. - `lanczos_iteration`: Constructs the tridiagonal matrix and orthonormal basis vectors. - `multiply_matrix_vector`: Multiplies an adjacency list graph with a vector. Complexity: - Time: O(k * n), where k is the number of eigenvalues and n is the matrix size. - Space: O(n), due to sparse representation and tridiagonal matrix structure. Further Reading: - Lanczos Algorithm: https://en.wikipedia.org/wiki/Lanczos_algorithm - Eigenvector Centrality: https://en.wikipedia.org/wiki/Eigenvector_centrality Example Usage: Given a graph represented by an adjacency list, the `find_lanczos_eigenvectors` function returns the largest eigenvalues and eigenvectors. This can be used to analyze graph centrality. """ import numpy as np def validate_adjacency_list(graph: list[list[int | None]]) -> None: """Validates the adjacency list format for the graph. Args: graph: A list of lists where each sublist contains the neighbors of a node. Raises: ValueError: If the graph is not a list of lists, or if any node has invalid neighbors (e.g., out-of-range or non-integer values). >>> validate_adjacency_list([[1, 2], [0], [0, 1]]) >>> validate_adjacency_list([[]]) # No neighbors, valid case >>> validate_adjacency_list([[1], [2], [-1]]) # Invalid neighbor Traceback (most recent call last): ... ValueError: Invalid neighbor -1 in node 2 adjacency list. """ if not isinstance(graph, list): raise ValueError("Graph should be a list of lists.") for node_index, neighbors in enumerate(graph): if not isinstance(neighbors, list): no_neighbors_message: str = ( f"Node {node_index} should have a list of neighbors." ) raise ValueError(no_neighbors_message) for neighbor_index in neighbors: if ( not isinstance(neighbor_index, int) or neighbor_index < 0 or neighbor_index >= len(graph) ): invalid_neighbor_message: str = ( f"Invalid neighbor {neighbor_index} in node {node_index} " f"adjacency list." ) raise ValueError(invalid_neighbor_message) def lanczos_iteration( graph: list[list[int | None]], num_eigenvectors: int ) -> tuple[np.ndarray, np.ndarray]: """Constructs the tridiagonal matrix and orthonormal basis vectors using the Lanczos method. Args: graph: The graph represented as a list of adjacency lists. num_eigenvectors: The number of largest eigenvalues and eigenvectors to approximate. Returns: A tuple containing: - tridiagonal_matrix: A (num_eigenvectors x num_eigenvectors) symmetric matrix. - orthonormal_basis: A (num_nodes x num_eigenvectors) matrix of orthonormal basis vectors. Raises: ValueError: If num_eigenvectors is less than 1 or greater than the number of nodes. >>> graph = [[1, 2], [0, 2], [0, 1]] >>> T, Q = lanczos_iteration(graph, 2) >>> T.shape == (2, 2) and Q.shape == (3, 2) True """ num_nodes: int = len(graph) if not (1 <= num_eigenvectors <= num_nodes): raise ValueError( "Number of eigenvectors must be between 1 and the number of " "nodes in the graph." ) orthonormal_basis: np.ndarray = np.zeros((num_nodes, num_eigenvectors)) tridiagonal_matrix: np.ndarray = np.zeros((num_eigenvectors, num_eigenvectors)) rng = np.random.default_rng() initial_vector: np.ndarray = rng.random(num_nodes) initial_vector /= np.sqrt(np.dot(initial_vector, initial_vector)) orthonormal_basis[:, 0] = initial_vector prev_beta: float = 0.0 for iter_index in range(num_eigenvectors): result_vector: np.ndarray = multiply_matrix_vector( graph, orthonormal_basis[:, iter_index] ) if iter_index > 0: result_vector -= prev_beta * orthonormal_basis[:, iter_index - 1] alpha_value: float = np.dot(orthonormal_basis[:, iter_index], result_vector) result_vector -= alpha_value * orthonormal_basis[:, iter_index] prev_beta = np.sqrt(np.dot(result_vector, result_vector)) if iter_index < num_eigenvectors - 1 and prev_beta > 1e-10: orthonormal_basis[:, iter_index + 1] = result_vector / prev_beta tridiagonal_matrix[iter_index, iter_index] = alpha_value if iter_index < num_eigenvectors - 1: tridiagonal_matrix[iter_index, iter_index + 1] = prev_beta tridiagonal_matrix[iter_index + 1, iter_index] = prev_beta return tridiagonal_matrix, orthonormal_basis def multiply_matrix_vector( graph: list[list[int | None]], vector: np.ndarray ) -> np.ndarray: """Performs multiplication of a graph's adjacency list representation with a vector. Args: graph: The adjacency list of the graph. vector: A 1D numpy array representing the vector to multiply. Returns: A numpy array representing the product of the adjacency list and the vector. Raises: ValueError: If the vector's length does not match the number of nodes in the graph. >>> multiply_matrix_vector([[1, 2], [0, 2], [0, 1]], np.array([1, 1, 1])) array([2., 2., 2.]) >>> multiply_matrix_vector([[1, 2], [0, 2], [0, 1]], np.array([0, 1, 0])) array([1., 0., 1.]) """ num_nodes: int = len(graph) if vector.shape[0] != num_nodes: raise ValueError("Vector length must match the number of nodes in the graph.") result: np.ndarray = np.zeros(num_nodes) for node_index, neighbors in enumerate(graph): for neighbor_index in neighbors: result[node_index] += vector[neighbor_index] return result def find_lanczos_eigenvectors( graph: list[list[int | None]], num_eigenvectors: int ) -> tuple[np.ndarray, np.ndarray]: """Computes the largest eigenvalues and their corresponding eigenvectors using the Lanczos method. Args: graph: The graph as a list of adjacency lists. num_eigenvectors: Number of largest eigenvalues and eigenvectors to compute. Returns: A tuple containing: - eigenvalues: 1D array of the largest eigenvalues in descending order. - eigenvectors: 2D array where each column is an eigenvector corresponding to an eigenvalue. Raises: ValueError: If the graph format is invalid or num_eigenvectors is out of bounds. >>> eigenvalues, eigenvectors = find_lanczos_eigenvectors( ... [[1, 2], [0, 2], [0, 1]], 2 ... ) >>> len(eigenvalues) == 2 and eigenvectors.shape[1] == 2 True """ validate_adjacency_list(graph) tridiagonal_matrix, orthonormal_basis = lanczos_iteration(graph, num_eigenvectors) eigenvalues, eigenvectors = np.linalg.eigh(tridiagonal_matrix) return eigenvalues[::-1], np.dot(orthonormal_basis, eigenvectors[:, ::-1]) def main() -> None: """ Main driver function for testing the implementation with doctests. """ import doctest doctest.testmod() if __name__ == "__main__": main()