"""Source: https://github.com/jason9075/opencv-mosaic-data-aug""" import glob import os import random from string import ascii_lowercase, digits import cv2 import numpy as np # Parameters OUTPUT_SIZE = (720, 1280) # Height, Width SCALE_RANGE = (0.4, 0.6) # if height or width lower than this scale, drop it. FILTER_TINY_SCALE = 1 / 100 LABEL_DIR = "" IMG_DIR = "" OUTPUT_DIR = "" NUMBER_IMAGES = 250 def main() -> None: """ Get images list and annotations list from input dir. Update new images and annotations. Save images and annotations in output dir. """ img_paths, annos = get_dataset(LABEL_DIR, IMG_DIR) for index in range(NUMBER_IMAGES): idxs = random.sample(range(len(annos)), 4) new_image, new_annos, path = update_image_and_anno( img_paths, annos, idxs, OUTPUT_SIZE, SCALE_RANGE, filter_scale=FILTER_TINY_SCALE, ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' letter_code = random_chars(32) file_name = path.split(os.sep)[-1].rsplit(".", 1)[0] file_root = f"{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}" cv2.imwrite(f"{file_root}.jpg", new_image, [cv2.IMWRITE_JPEG_QUALITY, 85]) print(f"Succeeded {index + 1}/{NUMBER_IMAGES} with {file_name}") annos_list = [] for anno in new_annos: width = anno[3] - anno[1] height = anno[4] - anno[2] x_center = anno[1] + width / 2 y_center = anno[2] + height / 2 obj = f"{anno[0]} {x_center} {y_center} {width} {height}" annos_list.append(obj) with open(f"{file_root}.txt", "w") as outfile: outfile.write("\n".join(line for line in annos_list)) def get_dataset(label_dir: str, img_dir: str) -> tuple[list, list]: """ - label_dir : Path to label include annotation of images - img_dir : Path to folder contain images Return : List of images path and labels """ img_paths = [] labels = [] for label_file in glob.glob(os.path.join(label_dir, "*.txt")): label_name = label_file.split(os.sep)[-1].rsplit(".", 1)[0] with open(label_file) as in_file: obj_lists = in_file.readlines() img_path = os.path.join(img_dir, f"{label_name}.jpg") boxes = [] for obj_list in obj_lists: obj = obj_list.rstrip("\n").split(" ") xmin = float(obj[1]) - float(obj[3]) / 2 ymin = float(obj[2]) - float(obj[4]) / 2 xmax = float(obj[1]) + float(obj[3]) / 2 ymax = float(obj[2]) + float(obj[4]) / 2 boxes.append([int(obj[0]), xmin, ymin, xmax, ymax]) if not boxes: continue img_paths.append(img_path) labels.append(boxes) return img_paths, labels def update_image_and_anno( all_img_list: list, all_annos: list, idxs: list[int], output_size: tuple[int, int], scale_range: tuple[float, float], filter_scale: float = 0.0, ) -> tuple[list, list, str]: """ - all_img_list : list of all images - all_annos : list of all annotations of specific image - idxs : index of image in list - output_size : size of output image (Height, Width) - scale_range : range of scale image - filter_scale : the condition of downscale image and bounding box Return: - output_img : image after resize - new_anno : list of new annotation after scale - path[0] : get the name of image file """ output_img = np.zeros([output_size[0], output_size[1], 3], dtype=np.uint8) scale_x = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) scale_y = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) divid_point_x = int(scale_x * output_size[1]) divid_point_y = int(scale_y * output_size[0]) new_anno = [] path_list = [] for i, index in enumerate(idxs): path = all_img_list[index] path_list.append(path) img_annos = all_annos[index] img = cv2.imread(path) if i == 0: # top-left img = cv2.resize(img, (divid_point_x, divid_point_y)) output_img[:divid_point_y, :divid_point_x, :] = img for bbox in img_annos: xmin = bbox[1] * scale_x ymin = bbox[2] * scale_y xmax = bbox[3] * scale_x ymax = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax]) elif i == 1: # top-right img = cv2.resize(img, (output_size[1] - divid_point_x, divid_point_y)) output_img[:divid_point_y, divid_point_x : output_size[1], :] = img for bbox in img_annos: xmin = scale_x + bbox[1] * (1 - scale_x) ymin = bbox[2] * scale_y xmax = scale_x + bbox[3] * (1 - scale_x) ymax = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax]) elif i == 2: # bottom-left img = cv2.resize(img, (divid_point_x, output_size[0] - divid_point_y)) output_img[divid_point_y : output_size[0], :divid_point_x, :] = img for bbox in img_annos: xmin = bbox[1] * scale_x ymin = scale_y + bbox[2] * (1 - scale_y) xmax = bbox[3] * scale_x ymax = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax]) else: # bottom-right img = cv2.resize( img, (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) output_img[ divid_point_y : output_size[0], divid_point_x : output_size[1], : ] = img for bbox in img_annos: xmin = scale_x + bbox[1] * (1 - scale_x) ymin = scale_y + bbox[2] * (1 - scale_y) xmax = scale_x + bbox[3] * (1 - scale_x) ymax = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax]) # Remove bounding box small than scale of filter if filter_scale > 0: new_anno = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def random_chars(number_char: int) -> str: """ Automatic generate random 32 characters. Get random string code: '7b7ad245cdff75241935e4dd860f3bad' >>> len(random_chars(32)) 32 """ assert number_char > 1, "The number of character should greater than 1" letter_code = ascii_lowercase + digits return "".join(random.choice(letter_code) for _ in range(number_char)) if __name__ == "__main__": main() print("DONE ✅")