# Implementing Newton Raphson method in Python # Author: Syed Haseeb Shah (github.com/QuantumNovice) # The Newton-Raphson method (also known as Newton's method) is a way to # quickly find a good approximation for the root of a real-valued function from decimal import Decimal from math import * # noqa: F401, F403 from sympy import diff def newton_raphson(func: str, a: int, precision: int=10 ** -10) -> float: """ Finds root from the point 'a' onwards by Newton-Raphson method >>> newton_raphson("sin(x)", 2) 3.1415926536808043 >>> newton_raphson("x**2 - 5*x +2", 0.4) 0.4384471871911695 >>> newton_raphson("x**2 - 5", 0.1) 2.23606797749979 >>> newton_raphson("log(x)- 1", 2) 2.718281828458938 """ x = a while True: x = Decimal(x) - (Decimal(eval(func)) / Decimal(eval(str(diff(func))))) # This number dictates the accuracy of the answer if abs(eval(func)) < precision: return float(x) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}") # Find root of polynomial print(f"The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}") # Find Square Root of 5 print(f"The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}") # Exponential Roots print(f"The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}")