# Ford-Fulkerson Algorithm for Maximum Flow Problem """ Description: (1) Start with initial flow as 0; (2) Choose augmenting path from source to sink and add path to flow; """ def bfs(graph, s, t, parent): # Return True if there is node that has not iterated. visited = [False] * len(graph) queue = [] queue.append(s) visited[s] = True while queue: u = queue.pop(0) for ind in range(len(graph[u])): if visited[ind] is False and graph[u][ind] > 0: queue.append(ind) visited[ind] = True parent[ind] = u return True if visited[t] else False def ford_fulkerson(graph, source, sink): # This array is filled by BFS and to store path parent = [-1] * (len(graph)) max_flow = 0 while bfs(graph, source, sink, parent): path_flow = float("Inf") s = sink while s != source: # Find the minimum value in select path path_flow = min(path_flow, graph[parent[s]][s]) s = parent[s] max_flow += path_flow v = sink while v != source: u = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow v = parent[v] return max_flow graph = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] source, sink = 0, 5 print(ford_fulkerson(graph, source, sink))