""" Create a Long Short Term Memory (LSTM) network model An LSTM is a type of Recurrent Neural Network (RNN) as discussed at: * https://colah.github.io/posts/2015-08-Understanding-LSTMs * https://en.wikipedia.org/wiki/Long_short-term_memory """ import numpy as np import pandas as pd from keras.layers import LSTM, Dense from keras.models import Sequential from sklearn.preprocessing import MinMaxScaler if __name__ == "__main__": """ First part of building a model is to get the data and prepare it for our model. You can use any dataset for stock prediction make sure you set the price column on line number 21. Here we use a dataset which have the price on 3rd column. """ sample_data = pd.read_csv("sample_data.csv", header=None) len_data = sample_data.shape[:1][0] # If you're using some other dataset input the target column actual_data = sample_data.iloc[:, 1:2] actual_data = actual_data.to_numpy().reshape(len_data, 1) actual_data = MinMaxScaler().fit_transform(actual_data) look_back = 10 forward_days = 5 periods = 20 division = len_data - periods * look_back train_data = actual_data[:division] test_data = actual_data[division - look_back :] train_x, train_y = [], [] test_x, test_y = [], [] for i in range(len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) x_train = np.array(train_x) x_test = np.array(test_x) y_train = np.array([list(i.ravel()) for i in train_y]) y_test = np.array([list(i.ravel()) for i in test_y]) model = Sequential() model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(128, 1))) model.add(Dense(forward_days)) model.compile(loss="mean_squared_error", optimizer="adam") history = model.fit( x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4 ) pred = model.predict(x_test)