from collections.abc import Callable def bisection(function: Callable[[float], float], a: float, b: float) -> float: """ finds where function becomes 0 in [a,b] using bolzano >>> bisection(lambda x: x ** 3 - 1, -5, 5) 1.0000000149011612 >>> bisection(lambda x: x ** 3 - 1, 2, 1000) Traceback (most recent call last): ... ValueError: could not find root in given interval. >>> bisection(lambda x: x ** 2 - 4 * x + 3, 0, 2) 1.0 >>> bisection(lambda x: x ** 2 - 4 * x + 3, 2, 4) 3.0 >>> bisection(lambda x: x ** 2 - 4 * x + 3, 4, 1000) Traceback (most recent call last): ... ValueError: could not find root in given interval. """ start: float = a end: float = b if function(a) == 0: # one of the a or b is a root for the function return a elif function(b) == 0: return b elif ( function(a) * function(b) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError("could not find root in given interval.") else: mid: float = start + (end - start) / 2.0 while abs(start - mid) > 10**-7: # until precisely equals to 10^-7 if function(mid) == 0: return mid elif function(mid) * function(start) < 0: end = mid else: start = mid mid = start + (end - start) / 2.0 return mid def f(x: float) -> float: return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1000)) import doctest doctest.testmod()