# Random Forest Regressor Example from sklearn.datasets import load_boston from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_absolute_error from sklearn.metrics import mean_squared_error def main(): """ Random Tree Regressor Example using sklearn function. Boston house price dataset is used to demonstrate algorithm. """ # Load Boston house price dataset boston = load_boston() print(boston.keys()) # Split dataset into train and test data X = boston["data"] # features Y = boston["target"] x_train, x_test, y_train, y_test = train_test_split( X, Y, test_size=0.3, random_state=1 ) # Random Forest Regressor rand_for = RandomForestRegressor(random_state=42, n_estimators=300) rand_for.fit(x_train, y_train) # Predict target for test data predictions = rand_for.predict(x_test) predictions = predictions.reshape(len(predictions), 1) # Error printing print(f"Mean Absolute Error:\t {mean_absolute_error(y_test, predictions)}") print(f"Mean Square Error :\t {mean_squared_error(y_test, predictions)}") if __name__ == "__main__": main()