def max_product_subarray(numbers: list[int]) -> int: """ Returns the maximum product that can be obtained by multiplying a contiguous subarray of the given integer list `numbers`. Example: >>> max_product_subarray([2, 3, -2, 4]) 6 >>> max_product_subarray((-2, 0, -1)) 0 >>> max_product_subarray([2, 3, -2, 4, -1]) 48 >>> max_product_subarray([-1]) -1 >>> max_product_subarray([0]) 0 >>> max_product_subarray([]) 0 >>> max_product_subarray("") 0 >>> max_product_subarray(None) 0 >>> max_product_subarray([2, 3, -2, 4.5, -1]) Traceback (most recent call last): ... ValueError: numbers must be an iterable of integers >>> max_product_subarray("ABC") Traceback (most recent call last): ... ValueError: numbers must be an iterable of integers """ if not numbers: return 0 if not isinstance(numbers, (list, tuple)) or not all( isinstance(number, int) for number in numbers ): raise ValueError("numbers must be an iterable of integers") max_till_now = min_till_now = max_prod = numbers[0] for i in range(1, len(numbers)): # update the maximum and minimum subarray products number = numbers[i] if number < 0: max_till_now, min_till_now = min_till_now, max_till_now max_till_now = max(number, max_till_now * number) min_till_now = min(number, min_till_now * number) # update the maximum product found till now max_prod = max(max_prod, max_till_now) return max_prod