def subset_combinations(elements: list[int], n: int) -> list: """ Compute n-element combinations from a given list using dynamic programming. Args: * `elements`: The list of elements from which combinations will be generated. * `n`: The number of elements in each combination. Returns: A list of tuples, each representing a combination of `n` elements. >>> subset_combinations(elements=[10, 20, 30, 40], n=2) [(10, 20), (10, 30), (10, 40), (20, 30), (20, 40), (30, 40)] >>> subset_combinations(elements=[1, 2, 3], n=1) [(1,), (2,), (3,)] >>> subset_combinations(elements=[1, 2, 3], n=3) [(1, 2, 3)] >>> subset_combinations(elements=[42], n=1) [(42,)] >>> subset_combinations(elements=[6, 7, 8, 9], n=4) [(6, 7, 8, 9)] >>> subset_combinations(elements=[10, 20, 30, 40, 50], n=0) [()] >>> subset_combinations(elements=[1, 2, 3, 4], n=2) [(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)] >>> subset_combinations(elements=[1, 'apple', 3.14], n=2) [(1, 'apple'), (1, 3.14), ('apple', 3.14)] >>> subset_combinations(elements=['single'], n=0) [()] >>> subset_combinations(elements=[], n=9) [] >>> from itertools import combinations >>> all(subset_combinations(items, n) == list(combinations(items, n)) ... for items, n in ( ... ([10, 20, 30, 40], 2), ([1, 2, 3], 1), ([1, 2, 3], 3), ([42], 1), ... ([6, 7, 8, 9], 4), ([10, 20, 30, 40, 50], 1), ([1, 2, 3, 4], 2), ... ([1, 'apple', 3.14], 2), (['single'], 0), ([], 9))) True """ r = len(elements) if n > r: return [] dp: list[list[tuple]] = [[] for _ in range(r + 1)] dp[0].append(()) for i in range(1, r + 1): for j in range(i, 0, -1): for prev_combination in dp[j - 1]: dp[j].append((*prev_combination, elements[i - 1])) try: return sorted(dp[n]) except TypeError: return dp[n] if __name__ == "__main__": from doctest import testmod testmod() print(f"{subset_combinations(elements=[10, 20, 30, 40], n=2) = }")