# Diophantine Equation : Given integers a,b,c ( at least one of a and b != 0), the diophantine equation # a*x + b*y = c has a solution (where x and y are integers) iff gcd(a,b) divides c. # GCD ( Greatest Common Divisor ) or HCF ( Highest Common Factor ) def diophantine(a, b, c): """ >>> diophantine(10,6,14) (-7.0, 14.0) >>> diophantine(391,299,-69) (9.0, -12.0) But above equation has one more solution i.e., x = -4, y = 5. That's why we need diophantine all solution function. """ assert ( c % greatest_common_divisor(a, b) == 0 ) # greatest_common_divisor(a,b) function implemented below (d, x, y) = extended_gcd(a, b) # extended_gcd(a,b) function implemented below r = c / d return (r * x, r * y) # Lemma : if n|ab and gcd(a,n) = 1, then n|b. # Finding All solutions of Diophantine Equations: # Theorem : Let gcd(a,b) = d, a = d*p, b = d*q. If (x0,y0) is a solution of Diophantine Equation a*x + b*y = c. # a*x0 + b*y0 = c, then all the solutions have the form a(x0 + t*q) + b(y0 - t*p) = c, where t is an arbitrary integer. # n is the number of solution you want, n = 2 by default def diophantine_all_soln(a, b, c, n=2): """ >>> diophantine_all_soln(10, 6, 14) -7.0 14.0 -4.0 9.0 >>> diophantine_all_soln(10, 6, 14, 4) -7.0 14.0 -4.0 9.0 -1.0 4.0 2.0 -1.0 >>> diophantine_all_soln(391, 299, -69, n = 4) 9.0 -12.0 22.0 -29.0 35.0 -46.0 48.0 -63.0 """ (x0, y0) = diophantine(a, b, c) # Initial value d = greatest_common_divisor(a, b) p = a // d q = b // d for i in range(n): x = x0 + i * q y = y0 - i * p print(x, y) # Euclid's Lemma : d divides a and b, if and only if d divides a-b and b # Euclid's Algorithm def greatest_common_divisor(a, b): """ >>> greatest_common_divisor(7,5) 1 Note : In number theory, two integers a and b are said to be relatively prime, mutually prime, or co-prime if the only positive integer (factor) that divides both of them is 1 i.e., gcd(a,b) = 1. >>> greatest_common_divisor(121, 11) 11 """ if a < b: a, b = b, a while a % b != 0: a, b = b, a % b return b # Extended Euclid's Algorithm : If d divides a and b and d = a*x + b*y for integers x and y, then d = gcd(a,b) def extended_gcd(a, b): """ >>> extended_gcd(10, 6) (2, -1, 2) >>> extended_gcd(7, 5) (1, -2, 3) """ assert a >= 0 and b >= 0 if b == 0: d, x, y = a, 1, 0 else: (d, p, q) = extended_gcd(b, a % b) x = q y = p - q * (a // b) assert a % d == 0 and b % d == 0 assert d == a * x + b * y return (d, x, y) # import testmod for testing our function from doctest import testmod if __name__ == "__main__": testmod(name="diophantine", verbose=True) testmod(name="diophantine_all_soln", verbose=True) testmod(name="extended_gcd", verbose=True) testmod(name="greatest_common_divisor", verbose=True)