import sys ''' Dynamic Programming Implementation of Matrix Chain Multiplication Time Complexity: O(n^3) Space Complexity: O(n^2) ''' def MatrixChainOrder(array): N=len(array) Matrix=[[0 for x in range(N)] for x in range(N)] Sol=[[0 for x in range(N)] for x in range(N)] for i in range(1,N): Matrix[i][i]=0 for ChainLength in range(2,N): for a in range(1,N-ChainLength+1): b = a+ChainLength-1 Matrix[a][b] = sys.maxsize for c in range(a , b): cost = Matrix[a][c] + Matrix[c+1][b] + array[a-1]*array[c]*array[b] if cost < Matrix[a][b]: Matrix[a][b] = cost Sol[a][b] = c return Matrix , Sol #Print order of matrix with Ai as Matrix def PrintOptimalSolution(OptimalSolution,i,j): if i==j: print("A" + str(i),end = " ") else: print("(",end = " ") PrintOptimalSolution(OptimalSolution,i,OptimalSolution[i][j]) PrintOptimalSolution(OptimalSolution,OptimalSolution[i][j]+1,j) print(")",end = " ") def main(): array=[30,35,15,5,10,20,25] n=len(array) #Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 Matrix , OptimalSolution = MatrixChainOrder(array) print("No. of Operation required: "+str((Matrix[1][n-1]))) PrintOptimalSolution(OptimalSolution,1,n-1) if __name__ == '__main__': main()