#!/usr/bin/python # encoding=utf8 ''' A Framework of Back Propagation Neural Network(BP) model Easy to use: * add many layers as you want !!! * clearly see how the loss decreasing Easy to expand: * more activation functions * more loss functions * more optimization method Author: Stephen Lee Github : https://github.com/RiptideBo Date: 2017.11.23 ''' import numpy as np import matplotlib.pyplot as plt def sigmoid(x): return 1 / (1 + np.exp(-1 * x)) class DenseLayer(): ''' Layers of BP neural network ''' def __init__(self,units,activation=None,learning_rate=None,is_input_layer=False): ''' common connected layer of bp network :param units: numbers of neural units :param activation: activation function :param learning_rate: learning rate for paras :param is_input_layer: whether it is input layer or not ''' self.units = units self.weight = None self.bias = None self.activation = activation if learning_rate is None: learning_rate = 0.3 self.learn_rate = learning_rate self.is_input_layer = is_input_layer def initializer(self,back_units): self.weight = np.asmatrix(np.random.normal(0,0.5,(self.units,back_units))) self.bias = np.asmatrix(np.random.normal(0,0.5,self.units)).T if self.activation is None: self.activation = sigmoid def cal_gradient(self): if self.activation == sigmoid: gradient_mat = np.dot(self.output ,(1- self.output).T) gradient_activation = np.diag(np.diag(gradient_mat)) else: gradient_activation = 1 return gradient_activation def forward_propagation(self,xdata): self.xdata = xdata if self.is_input_layer: # input layer self.wx_plus_b = xdata self.output = xdata return xdata else: self.wx_plus_b = np.dot(self.weight,self.xdata) - self.bias self.output = self.activation(self.wx_plus_b) return self.output def back_propagation(self,gradient): gradient_activation = self.cal_gradient() # i * i 维 gradient = np.asmatrix(np.dot(gradient.T,gradient_activation)) self._gradient_weight = np.asmatrix(self.xdata) self._gradient_bias = -1 self._gradient_x = self.weight self.gradient_weight = np.dot(gradient.T,self._gradient_weight.T) self.gradient_bias = gradient * self._gradient_bias self.gradient = np.dot(gradient,self._gradient_x).T # ----------------------upgrade # -----------the Negative gradient direction -------- self.weight = self.weight - self.learn_rate * self.gradient_weight self.bias = self.bias - self.learn_rate * self.gradient_bias.T return self.gradient class BPNN(): ''' Back Propagation Neural Network model ''' def __init__(self): self.layers = [] self.train_mse = [] self.fig_loss = plt.figure() self.ax_loss = self.fig_loss.add_subplot(1,1,1) def add_layer(self,layer): self.layers.append(layer) def build(self): for i,layer in enumerate(self.layers[:]): if i < 1: layer.is_input_layer = True else: layer.initializer(self.layers[i-1].units) def summary(self): for i,layer in enumerate(self.layers[:]): print('------- layer %d -------'%i) print('weight.shape ',np.shape(layer.weight)) print('bias.shape ',np.shape(layer.bias)) def train(self,xdata,ydata,train_round,accuracy): self.train_round = train_round self.accuracy = accuracy self.ax_loss.hlines(self.accuracy, 0, self.train_round * 1.1) x_shape = np.shape(xdata) for round_i in range(train_round): all_loss = 0 for row in range(x_shape[0]): _xdata = np.asmatrix(xdata[row,:]).T _ydata = np.asmatrix(ydata[row,:]).T # forward propagation for layer in self.layers: _xdata = layer.forward_propagation(_xdata) loss, gradient = self.cal_loss(_ydata, _xdata) all_loss = all_loss + loss # back propagation # the input_layer does not upgrade for layer in self.layers[:0:-1]: gradient = layer.back_propagation(gradient) mse = all_loss/x_shape[0] self.train_mse.append(mse) self.plot_loss() if mse < self.accuracy: print('----达到精度----') return mse def cal_loss(self,ydata,ydata_): self.loss = np.sum(np.power((ydata - ydata_),2)) self.loss_gradient = 2 * (ydata_ - ydata) # vector (shape is the same as _ydata.shape) return self.loss,self.loss_gradient def plot_loss(self): if self.ax_loss.lines: self.ax_loss.lines.remove(self.ax_loss.lines[0]) self.ax_loss.plot(self.train_mse, 'r-') plt.ion() plt.show() plt.pause(0.1) def example(): x = np.random.randn(10,10) y = np.asarray([[0.8,0.4],[0.4,0.3],[0.34,0.45],[0.67,0.32], [0.88,0.67],[0.78,0.77],[0.55,0.66],[0.55,0.43],[0.54,0.1], [0.1,0.5]]) model = BPNN() model.add_layer(DenseLayer(10)) model.add_layer(DenseLayer(20)) model.add_layer(DenseLayer(30)) model.add_layer(DenseLayer(2)) model.build() model.summary() model.train(xdata=x,ydata=y,train_round=100,accuracy=0.01) if __name__ == '__main__': example()