import numpy as np """# Ridge Regression Class class RidgeRegression: def __init__(self, learning_rate=0.01, num_iterations=1000, regularization_param=0.1): self.learning_rate = learning_rate self.num_iterations = num_iterations self.regularization_param = regularization_param self.weights = None self.bias = None def fit(self, X, y): n_samples, n_features = X.shape # initializing weights and bias self.weights = np.zeros(n_features) self.bias = 0 # gradient descent for _ in range(self.num_iterations): y_predicted = np.dot(X, self.weights) + self.bias # gradients for weights and bias dw = (1/n_samples) * np.dot(X.T, (y_predicted - y)) + (self.regularization_param / n_samples) * self.weights db = (1/n_samples) * np.sum(y_predicted - y) # updating weights and bias self.weights -= self.learning_rate * dw self.bias -= self.learning_rate * db def predict(self, X): return np.dot(X, self.weights) + self.bias def mean_absolute_error(self, y_true, y_pred): return np.mean(np.abs(y_true - y_pred)) # Load Data Function def load_data(file_path): data = [] with open(file_path, 'r') as file: for line in file.readlines()[1:]: features = line.strip().split(',') data.append([float(f) for f in features]) return np.array(data) # Example usage if __name__ == "__main__": data = load_data('ADRvsRating.csv') X = data[:, 0].reshape(-1, 1) # independent features y = data[:, 1] # dependent variable # initializing and training Ridge Regression model model = RidgeRegression(learning_rate=0.001, num_iterations=1000, regularization_param=0.1) model.fit(X, y) # predictions predictions = model.predict(X) # mean absolute error mae = model.mean_absolute_error(y, predictions) print(f"Mean Absolute Error: {mae}") # final output weights and bias print(f"Optimized Weights: {model.weights}") print(f"Bias: {model.bias}")""" import pandas as pd class RidgeRegression: def __init__(self, alpha=0.001, lambda_=0.1, iterations=1000): self.alpha = alpha self.lambda_ = lambda_ self.iterations = iterations self.theta = None def feature_scaling(self, X): mean = np.mean(X, axis=0) std = np.std(X, axis=0) # avoid division by zero for constant features (std = 0) std[std == 0] = 1 # set std=1 for constant features to avoid NaN X_scaled = (X - mean) / std return X_scaled, mean, std def fit(self, X, y): X_scaled, mean, std = self.feature_scaling(X) m, n = X_scaled.shape self.theta = np.zeros(n) # initializing weights to zeros for i in range(self.iterations): predictions = X_scaled.dot(self.theta) error = predictions - y # computing gradient with L2 regularization gradient = (X_scaled.T.dot(error) + self.lambda_ * self.theta) / m self.theta -= self.alpha * gradient # updating weights def predict(self, X): X_scaled, _, _ = self.feature_scaling(X) return X_scaled.dot(self.theta) def compute_cost(self, X, y): X_scaled, _, _ = self.feature_scaling(X) m = len(y) predictions = X_scaled.dot(self.theta) cost = (1 / (2 * m)) * np.sum((predictions - y) ** 2) + ( self.lambda_ / (2 * m) ) * np.sum(self.theta**2) return cost def mean_absolute_error(self, y_true, y_pred): return np.mean(np.abs(y_true - y_pred)) # Example usage if __name__ == "__main__": df = pd.read_csv("ADRvsRating.csv") X = df[["Rating"]].values y = df["ADR"].values y = (y - np.mean(y)) / np.std(y) # Add bias term (intercept) to the feature matrix X = np.c_[np.ones(X.shape[0]), X] # initialize and train the Ridge Regression model model = RidgeRegression(alpha=0.01, lambda_=0.1, iterations=1000) model.fit(X, y) # predictions predictions = model.predict(X) # results print("Optimized Weights:", model.theta) print("Cost:", model.compute_cost(X, y)) print("Mean Absolute Error:", model.mean_absolute_error(y, predictions))