#!/usr/bin/env python # Author: OMKAR PATHAK # This program will illustrate how to implement bucket sort algorithm # Wikipedia says: Bucket sort, or bin sort, is a sorting algorithm that works by distributing the # elements of an array into a number of buckets. Each bucket is then sorted individually, either using # a different sorting algorithm, or by recursively applying the bucket sorting algorithm. It is a # distribution sort, and is a cousin of radix sort in the most to least significant digit flavour. # Bucket sort is a generalization of pigeonhole sort. Bucket sort can be implemented with comparisons # and therefore can also be considered a comparison sort algorithm. The computational complexity estimates # involve the number of buckets. # Time Complexity of Solution: # Best Case O(n); Average Case O(n); Worst Case O(n) from __future__ import print_function from insertion_sort import insertion_sort import math DEFAULT_BUCKET_SIZE = 5 def bucketSort(myList, bucketSize=DEFAULT_BUCKET_SIZE): if(len(myList) == 0): print('You don\'t have any elements in array!') minValue = myList[0] maxValue = myList[0] # For finding minimum and maximum values for i in range(0, len(myList)): if myList[i] < minValue: minValue = myList[i] elif myList[i] > maxValue: maxValue = myList[i] # Initialize buckets bucketCount = math.floor((maxValue - minValue) / bucketSize) + 1 buckets = [] for i in range(0, bucketCount): buckets.append([]) # For putting values in buckets for i in range(0, len(myList)): buckets[math.floor((myList[i] - minValue) / bucketSize)].append(myList[i]) # Sort buckets and place back into input array sortedArray = [] for i in range(0, len(buckets)): insertion_sort(buckets[i]) for j in range(0, len(buckets[i])): sortedArray.append(buckets[i][j]) return sortedArray if __name__ == '__main__': sortedArray = bucketSort([12, 23, 4, 5, 3, 2, 12, 81, 56, 95]) print(sortedArray)