# https://github.com/rupansh/QuantumComputing/blob/master/rippleadd.py # https://en.wikipedia.org/wiki/Adder_(electronics)#Full_adder # https://en.wikipedia.org/wiki/Controlled_NOT_gate from qiskit import Aer, QuantumCircuit, execute from qiskit.providers import BaseBackend from typing import Tuple def store_two_classics(val1: int, val2: int) -> Tuple[QuantumCircuit, str, str]: """ Generates a Quantum Circuit which stores two classical integers Returns the circuit and binary representation of the integers """ x, y = bin(val1)[2:], bin(val2)[2:] # Remove leading '0b' # Ensure that both strings are of the same length if len(x) > len(y): y = y.zfill(len(x)) else: x = x.zfill(len(y)) # We need (3 * number of bits in the larger number)+1 qBits # The second parameter is the number of classical registers, to measure the result circuit = QuantumCircuit((len(x) * 3) + 1, len(x) + 1) # We are essentially "not-ing" the bits that are 1 # Reversed because its easier to perform ops on more significant bits for i in range(len(x)): if x[::-1][i] == "1": circuit.x(i) for j in range(len(y)): if y[::-1][j] == "1": circuit.x(len(x) + j) return circuit, x, y def full_adder( circuit: QuantumCircuit, input1_loc: int, input2_loc: int, carry_in: int, carry_out: int, ): """ Quantum Equivalent of a Full Adder Circuit CX/CCX is like 2-way/3-way XOR """ circuit.ccx(input1_loc, input2_loc, carry_out) circuit.cx(input1_loc, input2_loc) circuit.ccx(input2_loc, carry_in, carry_out) circuit.cx(input2_loc, carry_in) circuit.cx(input1_loc, input2_loc) def ripple_adder( val1: int, val2: int, backend: BaseBackend = Aer.get_backend("qasm_simulator") ) -> int: """ Quantum Equivalent of a Ripple Adder Circuit Uses qasm_simulator backend by default Currently only adds 'emulated' Classical Bits but nothing prevents us from doing this with hadamard'd bits :) Only supports adding +ve Integers >>> ripple_adder(3, 4) 7 >>> ripple_adder(10, 4) 14 >>> ripple_adder(-1, 10) Traceback (most recent call last): ... ValueError: Both Integers must be positive! """ if val1 < 0 or val2 < 0: raise ValueError("Both Integers must be positive!") # Store the Integers circuit, x, y = store_two_classics(val1, val2) """ We are essentially using each bit of x & y respectively as full_adder's input the carry_input is used from the previous circuit (for circuit num > 1) the carry_out is just below carry_input because it will be essentially the carry_input for the next full_adder """ for i in range(len(x)): full_adder(circuit, i, len(x) + i, len(x) + len(y) + i, len(x) + len(y) + i + 1) circuit.barrier() # Optional, just for aesthetics # Measure the resultant qBits for i in range(len(x) + 1): circuit.measure([(len(x) * 2) + i], [i]) res = execute(circuit, backend, shots=1).result() # The result is in binary. Convert it back to int return int(list(res.get_counts().keys())[0], 2) if __name__ == "__main__": import doctest doctest.testmod()