""" This script demonstrates the implementation of the Sigmoid function. The function takes a vector of K real numbers as input and then 1 / (1 + exp(-x)). After through Sigmoid, the element of the vector mostly 0 between 1. or 1 between -1. Script inspired from its corresponding Wikipedia article https://en.wikipedia.org/wiki/Sigmoid_function """ import numpy as np def sigmoid(vector: np.ndarray) -> np.ndarray: """ Implements the sigmoid function Parameters: vector (np.array): A numpy array of shape (1,n) consisting of real values Returns: sigmoid_vec (np.array): The input numpy array, after applying sigmoid. Examples: >>> sigmoid(np.array([-1.0, 1.0, 2.0])) array([0.26894142, 0.73105858, 0.88079708]) >>> sigmoid(np.array([0.0])) array([0.5]) >>> sigmoid(np.array([100.0])) array([1.]) >>> sigmoid(np.array([-100.0])) array([3.72007598e-44]) """ return 1 / (1 + np.exp(-vector)) if __name__ == "__main__": import doctest doctest.testmod()