""" Binomial Heap Reference: Advanced Data Structures, Peter Brass """ class Node: """ Node in a doubly-linked binomial tree, containing: - value - size of left subtree - link to left, right and parent nodes """ def __init__(self, val): self.val = val # Number of nodes in left subtree self.left_tree_size = 0 self.left = None self.right = None self.parent = None def mergeTrees(self, other): """ In-place merge of two binomial trees of equal size. Returns the root of the resulting tree """ assert ( self.left_tree_size == other.left_tree_size ), "Unequal Sizes of Blocks" if self.val < other.val: other.left = self.right other.parent = None if self.right: self.right.parent = other self.right = other self.left_tree_size = ( self.left_tree_size * 2 + 1 ) return self else: self.left = other.right self.parent = None if other.right: other.right.parent = self other.right = self other.left_tree_size = ( other.left_tree_size * 2 + 1 ) return other class BinomialHeap: """ Min-oriented priority queue implemented with the Binomial Heap data structure implemented with the BinomialHeap class. It supports: - Insert element in a heap with n elemnts: Guaranteed logn, amoratized 1 - Merge (meld) heaps of size m and n: O(logn + logm) - Delete Min: O(logn) - Peek (return min without deleting it): O(1) Example: Create a random permutation of 30 integers to be inserted and 19 of them deleted >>> import numpy as np >>> permutation = np.random.permutation(list(range(30))) Create a Heap and insert the 30 integers __init__() test >>> first_heap = BinomialHeap() 30 inserts - insert() test >>> for number in permutation: ... first_heap.insert(number) Size test >>> print(first_heap.size) 30 Deleting - delete() test >>> for i in range(25): ... print(first_heap.deleteMin(), end=" ") 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Create a new Heap >>> second_heap = BinomialHeap() >>> vals = [17, 20, 31, 34] >>> for value in vals: ... second_heap.insert(value) The heap should have the following structure: 17 / \ # 31 / \ 20 34 / \ / \ # # # # preOrder() test >>> print(second_heap.preOrder()) [(17, 0), ('#', 1), (31, 1), (20, 2), ('#', 3), ('#', 3), (34, 2), ('#', 3), ('#', 3)] printing Heap - __str__() test >>> print(second_heap) 17 -# -31 --20 ---# ---# --34 ---# ---# mergeHeaps() test >>> merged = second_heap.mergeHeaps(first_heap) >>> merged.peek() 17 values in merged heap; (merge is inplace) >>> while not first_heap.isEmpty(): ... print(first_heap.deleteMin(), end=" ") 17 20 25 26 27 28 29 31 34 """ def __init__( self, bottom_root=None, min_node=None, heap_size=0 ): self.size = heap_size self.bottom_root = bottom_root self.min_node = min_node def mergeHeaps(self, other): """ In-place merge of two binomial heaps. Both of them become the resulting merged heap """ # Empty heaps corner cases if other.size == 0: return if self.size == 0: self.size = other.size self.bottom_root = other.bottom_root self.min_node = other.min_node return # Update size self.size = self.size + other.size # Update min.node if self.min_node.val > other.min_node.val: self.min_node = other.min_node # Merge # Order roots by left_subtree_size combined_roots_list = [] i, j = self.bottom_root, other.bottom_root while i or j: if i and ( (not j) or i.left_tree_size < j.left_tree_size ): combined_roots_list.append((i, True)) i = i.parent else: combined_roots_list.append((j, False)) j = j.parent # Insert links between them for i in range(len(combined_roots_list) - 1): if ( combined_roots_list[i][1] != combined_roots_list[i + 1][1] ): combined_roots_list[i][ 0 ].parent = combined_roots_list[i + 1][0] combined_roots_list[i + 1][ 0 ].left = combined_roots_list[i][0] # Consecutively merge roots with same left_tree_size i = combined_roots_list[0][0] while i.parent: if ( ( i.left_tree_size == i.parent.left_tree_size ) and (not i.parent.parent) ) or ( i.left_tree_size == i.parent.left_tree_size and i.left_tree_size != i.parent.parent.left_tree_size ): # Neighbouring Nodes previous_node = i.left next_node = i.parent.parent # Merging trees i = i.mergeTrees(i.parent) # Updating links i.left = previous_node i.parent = next_node if previous_node: previous_node.parent = i if next_node: next_node.left = i else: i = i.parent # Updating self.bottom_root while i.left: i = i.left self.bottom_root = i # Update other other.size = self.size other.bottom_root = self.bottom_root other.min_node = self.min_node # Return the merged heap return self def insert(self, val): """ insert a value in the heap """ if self.size == 0: self.bottom_root = Node(val) self.size = 1 self.min_node = self.bottom_root else: # Create new node new_node = Node(val) # Update size self.size += 1 # update min_node if val < self.min_node.val: self.min_node = new_node # Put new_node as a bottom_root in heap self.bottom_root.left = new_node new_node.parent = self.bottom_root self.bottom_root = new_node # Consecutively merge roots with same left_tree_size while ( self.bottom_root.parent and self.bottom_root.left_tree_size == self.bottom_root.parent.left_tree_size ): # Next node next_node = self.bottom_root.parent.parent # Merge self.bottom_root = self.bottom_root.mergeTrees( self.bottom_root.parent ) # Update Links self.bottom_root.parent = next_node self.bottom_root.left = None if next_node: next_node.left = self.bottom_root def peek(self): """ return min element without deleting it """ return self.min_node.val def isEmpty(self): return self.size == 0 def deleteMin(self): """ delete min element and return it """ # assert not self.isEmpty(), "Empty Heap" # Save minimal value min_value = self.min_node.val # Last element in heap corner case if self.size == 1: # Update size self.size = 0 # Update bottom root self.bottom_root = None # Update min_node self.min_node = None return min_value # No right subtree corner case # The structure of the tree implies that this should be the bottom root # and there is at least one other root if self.min_node.right == None: # Update size self.size -= 1 # Update bottom root self.bottom_root = self.bottom_root.parent self.bottom_root.left = None # Update min_node self.min_node = self.bottom_root i = self.bottom_root.parent while i: if i.val < self.min_node.val: self.min_node = i i = i.parent return min_value # General case # Find the BinomialHeap of the right subtree of min_node bottom_of_new = self.min_node.right bottom_of_new.parent = None min_of_new = bottom_of_new size_of_new = 1 # Size, min_node and bottom_root while bottom_of_new.left: size_of_new = size_of_new * 2 + 1 bottom_of_new = bottom_of_new.left if bottom_of_new.val < min_of_new.val: min_of_new = bottom_of_new # Corner case of single root on top left path if (not self.min_node.left) and ( not self.min_node.parent ): self.size = size_of_new self.bottom_root = bottom_of_new self.min_node = min_of_new # print("Single root, multiple nodes case") return min_value # Remaining cases # Construct heap of right subtree newHeap = BinomialHeap( bottom_root=bottom_of_new, min_node=min_of_new, heap_size=size_of_new, ) # Update size self.size = self.size - 1 - size_of_new # Neighbour nodes previous_node = self.min_node.left next_node = self.min_node.parent # Initialize new bottom_root and min_node self.min_node = previous_node or next_node self.bottom_root = next_node # Update links of previous_node and search below for new min_node and # bottom_root if previous_node: previous_node.parent = next_node # Update bottom_root and search for min_node below self.bottom_root = previous_node self.min_node = previous_node while self.bottom_root.left: self.bottom_root = self.bottom_root.left if self.bottom_root.val < self.min_node.val: self.min_node = self.bottom_root if next_node: next_node.left = previous_node # Search for new min_node above min_node i = next_node while i: if i.val < self.min_node.val: self.min_node = i i = i.parent # Merge heaps self.mergeHeaps(newHeap) return min_value def preOrder(self): """ Returns the Pre-order representation of the heap including values of nodes plus their level distance from the root; Empty nodes appear as # """ # Find top root top_root = self.bottom_root while top_root.parent: top_root = top_root.parent # preorder heap_preOrder = [] self.__traversal(top_root, heap_preOrder) return heap_preOrder def __traversal(self, curr_node, preorder, level=0): """ Pre-order traversal of nodes """ if curr_node: preorder.append((curr_node.val, level)) self.__traversal( curr_node.left, preorder, level + 1 ) self.__traversal( curr_node.right, preorder, level + 1 ) else: preorder.append(("#", level)) def __str__(self): """ Overwriting str for a pre-order print of nodes in heap; Performance is poor, so use only for small examples """ if self.isEmpty(): return "" preorder_heap = self.preOrder() return "\n".join( ("-" * level + str(value)) for value, level in preorder_heap ) # Unit Tests if __name__ == "__main__": import doctest doctest.testmod()