""" The A* algorithm combines features of uniform-cost search and pure heuristic search to efficiently compute optimal solutions. The A* algorithm is a best-first search algorithm in which the cost associated with a node is f(n) = g(n) + h(n), where g(n) is the cost of the path from the initial state to node n and h(n) is the heuristic estimate or the cost or a path from node n to a goal. The A* algorithm introduces a heuristic into a regular graph-searching algorithm, essentially planning ahead at each step so a more optimal decision is made. For this reason, A* is known as an algorithm with brains. https://en.wikipedia.org/wiki/A*_search_algorithm """ import numpy as np class Cell: """ Class cell represents a cell in the world which have the properties: position: represented by tuple of x and y coordinates initially set to (0,0). parent: Contains the parent cell object visited before we arrived at this cell. g, h, f: Parameters used when calling our heuristic function. """ def __init__(self): self.position = (0, 0) self.parent = None self.g = 0 self.h = 0 self.f = 0 """ Overrides equals method because otherwise cell assign will give wrong results. """ def __eq__(self, cell): return self.position == cell.position def showcell(self): print(self.position) class Gridworld: """ Gridworld class represents the external world here a grid M*M matrix. world_size: create a numpy array with the given world_size default is 5. """ def __init__(self, world_size=(5, 5)): self.w = np.zeros(world_size) self.world_x_limit = world_size[0] self.world_y_limit = world_size[1] def show(self): print(self.w) def get_neighbours(self, cell): """ Return the neighbours of cell """ neughbour_cord = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] current_x = cell.position[0] current_y = cell.position[1] neighbours = [] for n in neughbour_cord: x = current_x + n[0] y = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: c = Cell() c.position = (x, y) c.parent = cell neighbours.append(c) return neighbours def astar(world, start, goal): """ Implementation of a start algorithm. world : Object of the world object. start : Object of the cell as start position. stop : Object of the cell as goal position. >>> p = Gridworld() >>> start = Cell() >>> start.position = (0,0) >>> goal = Cell() >>> goal.position = (4,4) >>> astar(p, start, goal) [(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)] """ _open = [] _closed = [] _open.append(start) while _open: min_f = np.argmin([n.f for n in _open]) current = _open[min_f] _closed.append(_open.pop(min_f)) if current == goal: break for n in world.get_neighbours(current): for c in _closed: if c == n: continue n.g = current.g + 1 x1, y1 = n.position x2, y2 = goal.position n.h = (y2 - y1) ** 2 + (x2 - x1) ** 2 n.f = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(n) path = [] while current.parent is not None: path.append(current.position) current = current.parent path.append(current.position) return path[::-1] if __name__ == "__main__": world = Gridworld() # Start position and goal start = Cell() start.position = (0, 0) goal = Cell() goal.position = (4, 4) print(f"path from {start.position} to {goal.position}") s = astar(world, start, goal) # Just for visual reasons. for i in s: world.w[i] = 1 print(world.w)