""" Given weights and values of n items, put these items in a knapsack of capacity W to get the maximum total value in the knapsack. Note that only the integer weights 0-1 knapsack problem is solvable using dynamic programming. """ def MF_knapsack(i, wt, val, j): ''' This code involves the concept of memory functions. Here we solve the subproblems which are needed unlike the below example F is a 2D array with -1s filled up ''' global F # a global dp table for knapsack if F[i][j] < 0: if j < wt[i-1]: val = MF_knapsack(i-1, wt, val, j) else: val = max(MF_knapsack(i-1, wt, val, j), MF_knapsack(i-1, wt, val, j - wt[i-1]) + val[i-1]) F[i][j] = val return F[i][j] def knapsack(W, wt, val, n): dp = [[0 for i in range(W+1)]for j in range(n+1)] for i in range(1,n+1): for w in range(1, W+1): if wt[i-1] <= w: dp[i][w] = max(val[i-1] + dp[i-1][w-wt[i-1]], dp[i-1][w]) else: dp[i][w] = dp[i-1][w] return dp[n][W], dp def knapsack_with_example_solution(W: int, wt: list, val:list): """ Solves the integer weights knapsack problem returns one of the several possible optimal subsets. Parameters --------- W: int, the total maximum weight for the given knapsack problem. wt: list, the vector of weights for all items where wt[i] is the weight of the ith item. val: list, the vector of values for all items where val[i] is the value of te ith item Returns ------- optimal_val: float, the optimal value for the given knapsack problem example_optional_set: set, the indices of one of the optimal subsets which gave rise to the optimal value. Examples ------- >>> knapsack_with_example_solution(10, [1, 3, 5, 2], [10, 20, 100, 22]) (142, {2, 3, 4}) >>> knapsack_with_example_solution(6, [4, 3, 2, 3], [3, 2, 4, 4]) (8, {3, 4}) >>> knapsack_with_example_solution(6, [4, 3, 2, 3], [3, 2, 4]) Traceback (most recent call last): ... ValueError: The number of weights must be the same as the number of values. But got 4 weights and 3 values """ if not (isinstance(wt, (list, tuple)) and isinstance(val, (list, tuple))): raise ValueError("Both the weights and values vectors must be either lists or tuples") num_items = len(wt) if num_items != len(val): raise ValueError("The number of weights must be the " "same as the number of values.\nBut " "got {} weights and {} values".format(num_items, len(val))) for i in range(num_items): if not isinstance(wt[i], int): raise TypeError("All weights must be integers but " "got weight of type {} at index {}".format(type(wt[i]), i)) optimal_val, dp_table = knapsack(W, wt, val, num_items) example_optional_set = set() _construct_solution(dp_table, wt, num_items, W, example_optional_set) return optimal_val, example_optional_set def _construct_solution(dp:list, wt:list, i:int, j:int, optimal_set:set): """ Recursively reconstructs one of the optimal subsets given a filled DP table and the vector of weights Parameters --------- dp: list of list, the table of a solved integer weight dynamic programming problem wt: list or tuple, the vector of weights of the items i: int, the index of the item under consideration j: int, the current possible maximum weight optimal_set: set, the optimal subset so far. This gets modified by the function. Returns ------- None """ # for the current item i at a maximum weight j to be part of an optimal subset, # the optimal value at (i, j) must be greater than the optimal value at (i-1, j). # where i - 1 means considering only the previous items at the given maximum weight if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(dp, wt, i - 1, j, optimal_set) else: optimal_set.add(i) _construct_solution(dp, wt, i - 1, j - wt[i-1], optimal_set) if __name__ == '__main__': ''' Adding test case for knapsack ''' val = [3, 2, 4, 4] wt = [4, 3, 2, 3] n = 4 w = 6 F = [[0] * (w + 1)] + [[0] + [-1 for i in range(w + 1)] for j in range(n + 1)] optimal_solution, _ = knapsack(w,wt,val, n) print(optimal_solution) print(MF_knapsack(n,wt,val,w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 optimal_solution, optimal_subset = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("optimal_value = ", optimal_solution) print("An optimal subset corresponding to the optimal value", optimal_subset)