""" This is a pure Python implementation of the Geometric Series algorithm https://en.wikipedia.org/wiki/Geometric_series Run the doctests with the following command: python3 -m doctest -v geometric_series.py or python -m doctest -v geometric_series.py For manual testing run: python3 geometric_series.py """ from __future__ import annotations def geometric_series( nth_term: float | int, start_term_a: float | int, common_ratio_r: float | int, ) -> list[float | int]: """ Pure Python implementation of Geometric Series algorithm :param nth_term: The last term (nth term of Geometric Series) :param start_term_a : The first term of Geometric Series :param common_ratio_r : The common ratio between all the terms :return: The Geometric Series starting from first term a and multiple of common ration with first term with increase in power till last term (nth term) Examples: >>> geometric_series(4, 2, 2) [2, 4.0, 8.0, 16.0] >>> geometric_series(4.0, 2.0, 2.0) [2.0, 4.0, 8.0, 16.0] >>> geometric_series(4.1, 2.1, 2.1) [2.1, 4.41, 9.261000000000001, 19.448100000000004] >>> geometric_series(4, 2, -2) [2, -4.0, 8.0, -16.0] >>> geometric_series(4, -2, 2) [-2, -4.0, -8.0, -16.0] >>> geometric_series(-4, 2, 2) [] >>> geometric_series(0, 100, 500) [] >>> geometric_series(1, 1, 1) [1] >>> geometric_series(0, 0, 0) [] """ if not all((nth_term, start_term_a, common_ratio_r)): return [] series: list[float | int] = [] power = 1 multiple = common_ratio_r for _ in range(int(nth_term)): if series == []: series.append(start_term_a) else: power += 1 series.append(float(start_term_a * multiple)) multiple = pow(float(common_ratio_r), power) return series if __name__ == "__main__": import doctest doctest.testmod() nth_term = float(input("Enter the last number (n term) of the Geometric Series")) start_term_a = float(input("Enter the starting term (a) of the Geometric Series")) common_ratio_r = float( input("Enter the common ratio between two terms (r) of the Geometric Series") ) print("Formula of Geometric Series => a + ar + ar^2 ... +ar^n") print(geometric_series(nth_term, start_term_a, common_ratio_r))