""" Author: P Shreyas Shetty Implementation of Newton-Raphson method for solving equations of kind f(x) = 0. It is an iterative method where solution is found by the expression x[n+1] = x[n] + f(x[n])/f'(x[n]) If no solution exists, then either the solution will not be found when iteration limit is reached or the gradient f'(x[n]) approaches zero. In both cases, exception is raised. If iteration limit is reached, try increasing maxiter. """ import math as m from collections.abc import Callable DerivativeFunc = Callable[[float], float] def calc_derivative(f: DerivativeFunc, a: float, h: float = 0.001) -> float: """ Calculates derivative at point a for function f using finite difference method """ return (f(a + h) - f(a - h)) / (2 * h) def newton_raphson( f: DerivativeFunc, x0: float = 0, maxiter: int = 100, step: float = 0.0001, maxerror: float = 1e-6, logsteps: bool = False, ) -> tuple[float, float, list[float]]: a = x0 # set the initial guess steps = [a] error = abs(f(a)) f1 = lambda x: calc_derivative(f, x, h=step) # noqa: E731 Derivative of f(x) for _ in range(maxiter): if f1(a) == 0: raise ValueError("No converging solution found") a = a - f(a) / f1(a) # Calculate the next estimate if logsteps: steps.append(a) if error < maxerror: break else: raise ValueError("Iteration limit reached, no converging solution found") if logsteps: # If logstep is true, then log intermediate steps return a, error, steps return a, error, [] if __name__ == "__main__": from matplotlib import pyplot as plt f = lambda x: m.tanh(x) ** 2 - m.exp(3 * x) # noqa: E731 solution, error, steps = newton_raphson( f, x0=10, maxiter=1000, step=1e-6, logsteps=True ) plt.plot([abs(f(x)) for x in steps]) plt.xlabel("step") plt.ylabel("error") plt.show() print(f"solution = {{{solution:f}}}, error = {{{error:f}}}")