import os import random import sys from . import cryptomath_module as cryptoMath from . import rabin_miller as rabinMiller min_primitive_root = 3 def main(): print("Making key files...") makeKeyFiles("elgamal", 2048) print("Key files generation successful") # I have written my code naively same as definition of primitive root # however every time I run this program, memory exceeded... # so I used 4.80 Algorithm in # Handbook of Applied Cryptography(CRC Press, ISBN : 0-8493-8523-7, October 1996) # and it seems to run nicely! def primitiveRoot(p_val): print("Generating primitive root of p") while True: g = random.randrange(3, p_val) if pow(g, 2, p_val) == 1: continue if pow(g, p_val, p_val) == 1: continue return g def generateKey(keySize): print("Generating prime p...") p = rabinMiller.generateLargePrime(keySize) # select large prime number. e_1 = primitiveRoot(p) # one primitive root on modulo p. d = random.randrange(3, p) # private_key -> have to be greater than 2 for safety. e_2 = cryptoMath.findModInverse(pow(e_1, d, p), p) publicKey = (keySize, e_1, e_2, p) privateKey = (keySize, d) return publicKey, privateKey def makeKeyFiles(name, keySize): if os.path.exists("%s_pubkey.txt" % name) or os.path.exists( "%s_privkey.txt" % name ): print("\nWARNING:") print( '"%s_pubkey.txt" or "%s_privkey.txt" already exists. \n' "Use a different name or delete these files and re-run this program." % (name, name) ) sys.exit() publicKey, privateKey = generateKey(keySize) print("\nWriting public key to file %s_pubkey.txt..." % name) with open("%s_pubkey.txt" % name, "w") as fo: fo.write( "%d,%d,%d,%d" % (publicKey[0], publicKey[1], publicKey[2], publicKey[3]) ) print("Writing private key to file %s_privkey.txt..." % name) with open("%s_privkey.txt" % name, "w") as fo: fo.write("%d,%d" % (privateKey[0], privateKey[1])) if __name__ == "__main__": main()