import numpy as np """ Here I implemented the scoring functions. MAE, MSE, RMSE, RMSLE are included. Those are used for calculating differences between predicted values and actual values. Metrics are slightly differentiated. Sometimes squared, rooted, even log is used. Using log and roots can be perceived as tools for penalizing big errors. However, using appropriate metrics depends on the situations, and types of data """ # Mean Absolute Error def mae(predict, actual): """ Examples(rounded for precision): >>> actual = [1,2,3];predict = [1,4,3] >>> np.around(mae(predict,actual),decimals = 2) 0.67 >>> actual = [1,1,1];predict = [1,1,1] >>> mae(predict,actual) 0.0 """ predict = np.array(predict) actual = np.array(actual) difference = abs(predict - actual) score = difference.mean() return score # Mean Squared Error def mse(predict, actual): """ Examples(rounded for precision): >>> actual = [1,2,3];predict = [1,4,3] >>> np.around(mse(predict,actual),decimals = 2) 1.33 >>> actual = [1,1,1];predict = [1,1,1] >>> mse(predict,actual) 0.0 """ predict = np.array(predict) actual = np.array(actual) difference = predict - actual square_diff = np.square(difference) score = square_diff.mean() return score # Root Mean Squared Error def rmse(predict, actual): """ Examples(rounded for precision): >>> actual = [1,2,3];predict = [1,4,3] >>> np.around(rmse(predict,actual),decimals = 2) 1.15 >>> actual = [1,1,1];predict = [1,1,1] >>> rmse(predict,actual) 0.0 """ predict = np.array(predict) actual = np.array(actual) difference = predict - actual square_diff = np.square(difference) mean_square_diff = square_diff.mean() score = np.sqrt(mean_square_diff) return score # Root Mean Square Logarithmic Error def rmsle(predict, actual): """ Examples(rounded for precision): >>> actual = [10,10,30];predict = [10,2,30] >>> np.around(rmsle(predict,actual),decimals = 2) 0.75 >>> actual = [1,1,1];predict = [1,1,1] >>> rmsle(predict,actual) 0.0 """ predict = np.array(predict) actual = np.array(actual) log_predict = np.log(predict + 1) log_actual = np.log(actual + 1) difference = log_predict - log_actual square_diff = np.square(difference) mean_square_diff = square_diff.mean() score = np.sqrt(mean_square_diff) return score # Mean Bias Deviation def mbd(predict, actual): """ This value is Negative, if the model underpredicts, positive, if it overpredicts. Example(rounded for precision): Here the model overpredicts >>> actual = [1,2,3];predict = [2,3,4] >>> np.around(mbd(predict,actual),decimals = 2) 50.0 Here the model underpredicts >>> actual = [1,2,3];predict = [0,1,1] >>> np.around(mbd(predict,actual),decimals = 2) -66.67 """ predict = np.array(predict) actual = np.array(actual) difference = predict - actual numerator = np.sum(difference) / len(predict) denumerator = np.sum(actual) / len(predict) # print(numerator, denumerator) score = float(numerator) / denumerator * 100 return score