''' Author: P Shreyas Shetty Implementation of Newton-Raphson method for solving equations of kind f(x) = 0. It is an iterative method where solution is found by the expression x[n+1] = x[n] + f(x[n])/f'(x[n]) If no solution exists, then either the solution will not be found when iteration limit is reached or the gradient f'(x[n]) approaches zero. In both cases, exception is raised. If iteration limit is reached, try increasing maxiter. ''' import math as m def calc_derivative(f, a, h=0.001): ''' Calculates derivative at point a for function f using finite difference method ''' return (f(a+h)-f(a-h))/(2*h) def newton_raphson(f, x0=0, maxiter=100, step=0.0001, maxerror=1e-6,logsteps=False): a = x0 #set the initial guess steps = [a] error = abs(f(a)) f1 = lambda x:calc_derivative(f, x, h=step) #Derivative of f(x) for _ in range(maxiter): if f1(a) == 0: raise ValueError("No converging solution found") a = a - f(a)/f1(a) #Calculate the next estimate if logsteps: steps.append(a) error = abs(f(a)) if error < maxerror: break else: raise ValueError("Iteration limit reached, no converging solution found") if logsteps: #If logstep is true, then log intermediate steps return a, error, steps return a, error if __name__ == '__main__': import matplotlib.pyplot as plt f = lambda x:m.tanh(x)**2-m.exp(3*x) solution, error, steps = newton_raphson(f, x0=10, maxiter=1000, step=1e-6, logsteps=True) plt.plot([abs(f(x)) for x in steps]) plt.xlabel("step") plt.ylabel("error") plt.show() print("solution = {%f}, error = {%f}" % (solution, error))