""" Wa-Tor algorithm (1984) | @ https://en.wikipedia.org/wiki/Wa-Tor | @ https://beltoforion.de/en/wator/ | @ https://beltoforion.de/en/wator/images/wator_medium.webm This solution aims to completely remove any systematic approach to the Wa-Tor planet, and utilise fully random methods. The constants are a working set that allows the Wa-Tor planet to result in one of the three possible results. """ from collections.abc import Callable from random import randint, shuffle from time import sleep from typing import Literal WIDTH = 50 # Width of the Wa-Tor planet HEIGHT = 50 # Height of the Wa-Tor planet PREY_INITIAL_COUNT = 30 # The initial number of prey entities PREY_REPRODUCTION_TIME = 5 # The chronons before reproducing PREDATOR_INITIAL_COUNT = 50 # The initial number of predator entities # The initial energy value of predator entities PREDATOR_INITIAL_ENERGY_VALUE = 15 # The energy value provided when consuming prey PREDATOR_FOOD_VALUE = 5 PREDATOR_REPRODUCTION_TIME = 20 # The chronons before reproducing MAX_ENTITIES = 500 # The max number of organisms on the board # The number of entities to delete from the unbalanced side DELETE_UNBALANCED_ENTITIES = 50 class Entity: """ Represents an entity (either prey or predator). >>> e = Entity(True, coords=(0, 0)) >>> e.prey True >>> e.coords (0, 0) >>> e.alive True """ def __init__(self, prey: bool, coords: tuple[int, int]) -> None: self.prey = prey # The (row, col) pos of the entity self.coords = coords self.remaining_reproduction_time = ( PREY_REPRODUCTION_TIME if prey else PREDATOR_REPRODUCTION_TIME ) self.energy_value = None if prey is True else PREDATOR_INITIAL_ENERGY_VALUE self.alive = True def reset_reproduction_time(self) -> None: """ >>> e = Entity(True, coords=(0, 0)) >>> e.reset_reproduction_time() >>> e.remaining_reproduction_time == PREY_REPRODUCTION_TIME True >>> e = Entity(False, coords=(0, 0)) >>> e.reset_reproduction_time() >>> e.remaining_reproduction_time == PREDATOR_REPRODUCTION_TIME True """ self.remaining_reproduction_time = ( PREY_REPRODUCTION_TIME if self.prey is True else PREDATOR_REPRODUCTION_TIME ) def __repr__(self) -> str: """ >>> Entity(prey=True, coords=(1, 1)) Entity(prey=True, coords=(1, 1), remaining_reproduction_time=5) >>> Entity(prey=False, coords=(2, 1)) # doctest: +NORMALIZE_WHITESPACE Entity(prey=False, coords=(2, 1), remaining_reproduction_time=20, energy_value=15) """ repr_ = ( f"Entity(prey={self.prey}, coords={self.coords}, " f"remaining_reproduction_time={self.remaining_reproduction_time}" ) if self.energy_value is not None: repr_ += f", energy_value={self.energy_value}" return f"{repr_})" class WaTor: """ Represents the main Wa-Tor algorithm. :attr time_passed: A function that is called every time time passes (a chronon) in order to visually display the new Wa-Tor planet. The `time_passed` function can block using ``time.sleep`` to slow the algorithm progression. >>> wt = WaTor(10, 15) >>> wt.width 10 >>> wt.height 15 >>> len(wt.planet) 15 >>> len(wt.planet[0]) 10 >>> len(wt.get_entities()) == PREDATOR_INITIAL_COUNT + PREY_INITIAL_COUNT True """ time_passed: Callable[["WaTor", int], None] | None def __init__(self, width: int, height: int) -> None: self.width = width self.height = height self.time_passed = None self.planet: list[list[Entity | None]] = [[None] * width for _ in range(height)] # Populate planet with predators and prey randomly for _ in range(PREY_INITIAL_COUNT): self.add_entity(prey=True) for _ in range(PREDATOR_INITIAL_COUNT): self.add_entity(prey=False) self.set_planet(self.planet) def set_planet(self, planet: list[list[Entity | None]]) -> None: """ Ease of access for testing >>> wt = WaTor(WIDTH, HEIGHT) >>> planet = [ ... [None, None, None], ... [None, Entity(True, coords=(1, 1)), None] ... ] >>> wt.set_planet(planet) >>> wt.planet == planet True >>> wt.width 3 >>> wt.height 2 """ self.planet = planet self.width = len(planet[0]) self.height = len(planet) def add_entity(self, prey: bool) -> None: """ Adds an entity, making sure the entity does not override another entity >>> wt = WaTor(WIDTH, HEIGHT) >>> wt.set_planet([[None, None], [None, None]]) >>> wt.add_entity(True) >>> len(wt.get_entities()) 1 >>> wt.add_entity(False) >>> len(wt.get_entities()) 2 """ while True: row, col = randint(0, self.height - 1), randint(0, self.width - 1) if self.planet[row][col] is None: self.planet[row][col] = Entity(prey=prey, coords=(row, col)) return def get_entities(self) -> list[Entity]: """ Returns a list of all the entities within the planet. >>> wt = WaTor(WIDTH, HEIGHT) >>> len(wt.get_entities()) == PREDATOR_INITIAL_COUNT + PREY_INITIAL_COUNT True """ return [entity for column in self.planet for entity in column if entity] def balance_predators_and_prey(self) -> None: """ Balances predators and preys so that prey can not dominate the predators, blocking up space for them to reproduce. >>> wt = WaTor(WIDTH, HEIGHT) >>> for i in range(2000): ... row, col = i // HEIGHT, i % WIDTH ... wt.planet[row][col] = Entity(True, coords=(row, col)) >>> entities = len(wt.get_entities()) >>> wt.balance_predators_and_prey() >>> len(wt.get_entities()) == entities False """ entities = self.get_entities() shuffle(entities) if len(entities) >= MAX_ENTITIES - MAX_ENTITIES / 10: prey = [entity for entity in entities if entity.prey] predators = [entity for entity in entities if not entity.prey] prey_count, predator_count = len(prey), len(predators) entities_to_purge = ( prey[:DELETE_UNBALANCED_ENTITIES] if prey_count > predator_count else predators[:DELETE_UNBALANCED_ENTITIES] ) for entity in entities_to_purge: self.planet[entity.coords[0]][entity.coords[1]] = None def get_surrounding_prey(self, entity: Entity) -> list[Entity]: """ Returns all the prey entities around (N, S, E, W) a predator entity. Subtly different to the `move_and_reproduce`. >>> wt = WaTor(WIDTH, HEIGHT) >>> wt.set_planet([ ... [None, Entity(True, (0, 1)), None], ... [None, Entity(False, (1, 1)), None], ... [None, Entity(True, (2, 1)), None]]) >>> wt.get_surrounding_prey( ... Entity(False, (1, 1))) # doctest: +NORMALIZE_WHITESPACE [Entity(prey=True, coords=(0, 1), remaining_reproduction_time=5), Entity(prey=True, coords=(2, 1), remaining_reproduction_time=5)] >>> wt.set_planet([[Entity(False, (0, 0))]]) >>> wt.get_surrounding_prey(Entity(False, (0, 0))) [] >>> wt.set_planet([ ... [Entity(True, (0, 0)), Entity(False, (1, 0)), Entity(False, (2, 0))], ... [None, Entity(False, (1, 1)), Entity(True, (2, 1))], ... [None, None, None]]) >>> wt.get_surrounding_prey(Entity(False, (1, 0))) [Entity(prey=True, coords=(0, 0), remaining_reproduction_time=5)] """ row, col = entity.coords adjacent: list[tuple[int, int]] = [ (row - 1, col), # North (row + 1, col), # South (row, col - 1), # West (row, col + 1), # East ] return [ ent for r, c in adjacent if 0 <= r < self.height and 0 <= c < self.width and (ent := self.planet[r][c]) is not None and ent.prey ] def move_and_reproduce( self, entity: Entity, direction_orders: list[Literal["N", "E", "S", "W"]] ) -> None: """ Attempts to move to an unoccupied neighbouring square in either of the four directions (North, South, East, West). If the move was successful and the `remaining_reproduction_time` is equal to 0, then a new prey or predator can also be created in the previous square. :param direction_orders: Ordered list (like priority queue) depicting order to attempt to move. Removes any systematic approach of checking neighbouring squares. >>> planet = [ ... [None, None, None], ... [None, Entity(True, coords=(1, 1)), None], ... [None, None, None] ... ] >>> wt = WaTor(WIDTH, HEIGHT) >>> wt.set_planet(planet) >>> wt.move_and_reproduce(Entity(True, coords=(1, 1)), direction_orders=["N"]) >>> wt.planet # doctest: +NORMALIZE_WHITESPACE [[None, Entity(prey=True, coords=(0, 1), remaining_reproduction_time=4), None], [None, None, None], [None, None, None]] >>> wt.planet[0][0] = Entity(True, coords=(0, 0)) >>> wt.move_and_reproduce(Entity(True, coords=(0, 1)), ... direction_orders=["N", "W", "E", "S"]) >>> wt.planet # doctest: +NORMALIZE_WHITESPACE [[Entity(prey=True, coords=(0, 0), remaining_reproduction_time=5), None, Entity(prey=True, coords=(0, 2), remaining_reproduction_time=4)], [None, None, None], [None, None, None]] >>> wt.planet[0][1] = wt.planet[0][2] >>> wt.planet[0][2] = None >>> wt.move_and_reproduce(Entity(True, coords=(0, 1)), ... direction_orders=["N", "W", "S", "E"]) >>> wt.planet # doctest: +NORMALIZE_WHITESPACE [[Entity(prey=True, coords=(0, 0), remaining_reproduction_time=5), None, None], [None, Entity(prey=True, coords=(1, 1), remaining_reproduction_time=4), None], [None, None, None]] >>> wt = WaTor(WIDTH, HEIGHT) >>> reproducable_entity = Entity(False, coords=(0, 1)) >>> reproducable_entity.remaining_reproduction_time = 0 >>> wt.planet = [[None, reproducable_entity]] >>> wt.move_and_reproduce(reproducable_entity, ... direction_orders=["N", "W", "S", "E"]) >>> wt.planet # doctest: +NORMALIZE_WHITESPACE [[Entity(prey=False, coords=(0, 0), remaining_reproduction_time=20, energy_value=15), Entity(prey=False, coords=(0, 1), remaining_reproduction_time=20, energy_value=15)]] """ row, col = coords = entity.coords adjacent_squares: dict[Literal["N", "E", "S", "W"], tuple[int, int]] = { "N": (row - 1, col), # North "S": (row + 1, col), # South "W": (row, col - 1), # West "E": (row, col + 1), # East } # Weight adjacent locations adjacent: list[tuple[int, int]] = [] for order in direction_orders: adjacent.append(adjacent_squares[order]) for r, c in adjacent: if ( 0 <= r < self.height and 0 <= c < self.width and self.planet[r][c] is None ): # Move entity to empty adjacent square self.planet[r][c] = entity self.planet[row][col] = None entity.coords = (r, c) break # (2.) See if it possible to reproduce in previous square if coords != entity.coords and entity.remaining_reproduction_time <= 0: # Check if the entities on the planet is less than the max limit if len(self.get_entities()) < MAX_ENTITIES: # Reproduce in previous square self.planet[row][col] = Entity(prey=entity.prey, coords=coords) entity.reset_reproduction_time() else: entity.remaining_reproduction_time -= 1 def perform_prey_actions( self, entity: Entity, direction_orders: list[Literal["N", "E", "S", "W"]] ) -> None: """ Performs the actions for a prey entity For prey the rules are: 1. At each chronon, a prey moves randomly to one of the adjacent unoccupied squares. If there are no free squares, no movement takes place. 2. Once a prey has survived a certain number of chronons it may reproduce. This is done as it moves to a neighbouring square, leaving behind a new prey in its old position. Its reproduction time is also reset to zero. >>> wt = WaTor(WIDTH, HEIGHT) >>> reproducable_entity = Entity(True, coords=(0, 1)) >>> reproducable_entity.remaining_reproduction_time = 0 >>> wt.planet = [[None, reproducable_entity]] >>> wt.perform_prey_actions(reproducable_entity, ... direction_orders=["N", "W", "S", "E"]) >>> wt.planet # doctest: +NORMALIZE_WHITESPACE [[Entity(prey=True, coords=(0, 0), remaining_reproduction_time=5), Entity(prey=True, coords=(0, 1), remaining_reproduction_time=5)]] """ self.move_and_reproduce(entity, direction_orders) def perform_predator_actions( self, entity: Entity, occupied_by_prey_coords: tuple[int, int] | None, direction_orders: list[Literal["N", "E", "S", "W"]], ) -> None: """ Performs the actions for a predator entity :param occupied_by_prey_coords: Move to this location if there is prey there For predators the rules are: 1. At each chronon, a predator moves randomly to an adjacent square occupied by a prey. If there is none, the predator moves to a random adjacent unoccupied square. If there are no free squares, no movement takes place. 2. At each chronon, each predator is deprived of a unit of energy. 3. Upon reaching zero energy, a predator dies. 4. If a predator moves to a square occupied by a prey, it eats the prey and earns a certain amount of energy. 5. Once a predator has survived a certain number of chronons it may reproduce in exactly the same way as the prey. >>> wt = WaTor(WIDTH, HEIGHT) >>> wt.set_planet([[Entity(True, coords=(0, 0)), Entity(False, coords=(0, 1))]]) >>> wt.perform_predator_actions(Entity(False, coords=(0, 1)), (0, 0), []) >>> wt.planet # doctest: +NORMALIZE_WHITESPACE [[Entity(prey=False, coords=(0, 0), remaining_reproduction_time=20, energy_value=19), None]] """ assert entity.energy_value is not None # [type checking] # (3.) If the entity has 0 energy, it will die if entity.energy_value == 0: self.planet[entity.coords[0]][entity.coords[1]] = None return # (1.) Move to entity if possible if occupied_by_prey_coords is not None: # Kill the prey prey = self.planet[occupied_by_prey_coords[0]][occupied_by_prey_coords[1]] assert prey is not None prey.alive = False # Move onto prey self.planet[occupied_by_prey_coords[0]][occupied_by_prey_coords[1]] = entity self.planet[entity.coords[0]][entity.coords[1]] = None entity.coords = occupied_by_prey_coords # (4.) Eats the prey and earns energy entity.energy_value += PREDATOR_FOOD_VALUE else: # (5.) If it has survived the certain number of chronons it will also # reproduce in this function self.move_and_reproduce(entity, direction_orders) # (2.) Each chronon, the predator is deprived of a unit of energy entity.energy_value -= 1 def run(self, *, iteration_count: int) -> None: """ Emulate time passing by looping `iteration_count` times >>> wt = WaTor(WIDTH, HEIGHT) >>> wt.run(iteration_count=PREDATOR_INITIAL_ENERGY_VALUE - 1) >>> len(list(filter(lambda entity: entity.prey is False, ... wt.get_entities()))) >= PREDATOR_INITIAL_COUNT True """ for iter_num in range(iteration_count): # Generate list of all entities in order to randomly # pop an entity at a time to simulate true randomness # This removes the systematic approach of iterating # through each entity width by height all_entities = self.get_entities() for __ in range(len(all_entities)): entity = all_entities.pop(randint(0, len(all_entities) - 1)) if entity.alive is False: continue directions: list[Literal["N", "E", "S", "W"]] = ["N", "E", "S", "W"] shuffle(directions) # Randomly shuffle directions if entity.prey: self.perform_prey_actions(entity, directions) else: # Create list of surrounding prey surrounding_prey = self.get_surrounding_prey(entity) surrounding_prey_coords = None if surrounding_prey: # Again, randomly shuffle directions shuffle(surrounding_prey) surrounding_prey_coords = surrounding_prey[0].coords self.perform_predator_actions( entity, surrounding_prey_coords, directions ) # Balance out the predators and prey self.balance_predators_and_prey() if self.time_passed is not None: # Call time_passed function for Wa-Tor planet # visualisation in a terminal or a graph. self.time_passed(self, iter_num) def visualise(wt: WaTor, iter_number: int, *, colour: bool = True) -> None: """ Visually displays the Wa-Tor planet using an ascii code in terminal to clear and re-print the Wa-Tor planet at intervals. Uses ascii colour codes to colourfully display the predators and prey: * (0x60f197) Prey = ``#`` * (0xfffff) Predator = ``x`` >>> wt = WaTor(30, 30) >>> wt.set_planet([ ... [Entity(True, coords=(0, 0)), Entity(False, coords=(0, 1)), None], ... [Entity(False, coords=(1, 0)), None, Entity(False, coords=(1, 2))], ... [None, Entity(True, coords=(2, 1)), None] ... ]) >>> visualise(wt, 0, colour=False) # doctest: +NORMALIZE_WHITESPACE # x . x . x . # . Iteration: 0 | Prey count: 2 | Predator count: 3 | """ if colour: __import__("os").system("") print("\x1b[0;0H\x1b[2J\x1b[?25l") reprint = "\x1b[0;0H" if colour else "" ansi_colour_end = "\x1b[0m " if colour else " " planet = wt.planet output = "" # Iterate over every entity in the planet for row in planet: for entity in row: if entity is None: output += " . " else: if colour is True: output += ( "\x1b[38;2;96;241;151m" if entity.prey else "\x1b[38;2;255;255;15m" ) output += f" {'#' if entity.prey else 'x'}{ansi_colour_end}" output += "\n" entities = wt.get_entities() prey_count = sum(entity.prey for entity in entities) print( f"{output}\n Iteration: {iter_number} | Prey count: {prey_count} | " f"Predator count: {len(entities) - prey_count} | {reprint}" ) # Block the thread to be able to visualise seeing the algorithm sleep(0.05) if __name__ == "__main__": import doctest doctest.testmod() wt = WaTor(WIDTH, HEIGHT) wt.time_passed = visualise wt.run(iteration_count=100_000)