import math class Graph: def __init__(self, n=0): # a graph with Node 0,1,...,N-1 self.n = n self.w = [ [math.inf for j in range(n)] for i in range(n) ] # adjacency matrix for weight self.dp = [ [math.inf for j in range(n)] for i in range(n) ] # dp[i][j] stores minimum distance from i to j def add_edge(self, u, v, w): """ Adds a directed edge from node u to node v with weight w. >>> g = Graph(3) >>> g.add_edge(0, 1, 5) >>> g.dp[0][1] 5 """ self.dp[u][v] = w def floyd_warshall(self): """ Computes the shortest paths between all pairs of nodes using the Floyd-Warshall algorithm. >>> g = Graph(3) >>> g.add_edge(0, 1, 1) >>> g.add_edge(1, 2, 2) >>> g.floyd_warshall() >>> g.show_min(0, 2) 3 >>> g.show_min(2, 0) inf """ for k in range(self.n): for i in range(self.n): for j in range(self.n): self.dp[i][j] = min(self.dp[i][j], self.dp[i][k] + self.dp[k][j]) def show_min(self, u, v): """ Returns the minimum distance from node u to node v. >>> g = Graph(3) >>> g.add_edge(0, 1, 3) >>> g.add_edge(1, 2, 4) >>> g.floyd_warshall() >>> g.show_min(0, 2) 7 >>> g.show_min(1, 0) inf """ return self.dp[u][v] if __name__ == "__main__": import doctest doctest.testmod() # Example usage graph = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() print( graph.show_min(1, 4) ) # Should output the minimum distance from node 1 to node 4 print( graph.show_min(0, 3) ) # Should output the minimum distance from node 0 to node 3