""" Problem 33: https://projecteuler.net/problem=33 The fraction 49/98 is a curious fraction, as an inexperienced mathematician in attempting to simplify it may incorrectly believe that 49/98 = 4/8, which is correct, is obtained by cancelling the 9s. We shall consider fractions like, 30/50 = 3/5, to be trivial examples. There are exactly four non-trivial examples of this type of fraction, less than one in value, and containing two digits in the numerator and denominator. If the product of these four fractions is given in its lowest common terms, find the value of the denominator. """ from __future__ import annotations from fractions import Fraction def is_digit_cancelling(num: int, den: int) -> bool: return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def fraction_list(digit_len: int) -> list[str]: """ >>> fraction_list(2) ['16/64', '19/95', '26/65', '49/98'] >>> fraction_list(3) ['16/64', '19/95', '26/65', '49/98'] >>> fraction_list(4) ['16/64', '19/95', '26/65', '49/98'] >>> fraction_list(0) [] >>> fraction_list(5) ['16/64', '19/95', '26/65', '49/98'] """ solutions = [] den = 11 last_digit = int("1" + "0" * digit_len) for num in range(den, last_digit): while den <= 99: if ( (num != den) and (num % 10 == den // 10) and (den % 10 != 0) and is_digit_cancelling(num, den) ): solutions.append(f"{num}/{den}") den += 1 num += 1 den = 10 return solutions def solution(n: int = 2) -> int: """ Return the solution to the problem """ result = 1.0 for fraction in fraction_list(n): frac = Fraction(fraction) result *= frac.denominator / frac.numerator return int(result) if __name__ == "__main__": print(solution())