""" This script implements the Dijkstra algorithm on a binary grid. The grid consists of 0s and 1s, where 1 represents a walkable node and 0 represents an obstacle. The algorithm finds the shortest path from a start node to a destination node. Diagonal movement can be allowed or disallowed. """ from heapq import heappop, heappush import numpy as np def dijkstra( grid: np.ndarray, source: tuple[int, int], destination: tuple[int, int], allow_diagonal: bool, ) -> tuple[float | int, list[tuple[int, int]]]: """ Implements Dijkstra's algorithm on a binary grid. Args: grid (np.ndarray): A 2D numpy array representing the grid. 1 represents a walkable node and 0 represents an obstacle. source (Tuple[int, int]): A tuple representing the start node. destination (Tuple[int, int]): A tuple representing the destination node. allow_diagonal (bool): A boolean determining whether diagonal movements are allowed. Returns: Tuple[Union[float, int], List[Tuple[int, int]]]: The shortest distance from the start node to the destination node and the shortest path as a list of nodes. >>> dijkstra(np.array([[1, 1, 1], [0, 1, 0], [0, 1, 1]]), (0, 0), (2, 2), False) (4.0, [(0, 0), (0, 1), (1, 1), (2, 1), (2, 2)]) >>> dijkstra(np.array([[1, 1, 1], [0, 1, 0], [0, 1, 1]]), (0, 0), (2, 2), True) (2.0, [(0, 0), (1, 1), (2, 2)]) >>> dijkstra(np.array([[1, 1, 1], [0, 0, 1], [0, 1, 1]]), (0, 0), (2, 2), False) (4.0, [(0, 0), (0, 1), (0, 2), (1, 2), (2, 2)]) """ rows, cols = grid.shape dx = [-1, 1, 0, 0] dy = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] queue, visited = [(0, source)], set() matrix = np.full((rows, cols), np.inf) matrix[source] = 0 predecessors = np.empty((rows, cols), dtype=object) predecessors[source] = None while queue: (dist, (x, y)) = heappop(queue) if (x, y) in visited: continue visited.add((x, y)) if (x, y) == destination: path = [] while (x, y) != source: path.append((x, y)) x, y = predecessors[x, y] path.append(source) # add the source manually path.reverse() return float(matrix[destination]), path for i in range(len(dx)): nx, ny = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: next_node = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(queue, (dist + 1, (nx, ny))) matrix[nx, ny] = dist + 1 predecessors[nx, ny] = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()