import numpy as np import pandas as pd class RidgeRegression: def __init__(self, alpha: float = 0.001, regularization_param: float = 0.1, num_iterations: int = 1000, ) -> None: self.alpha: float = alpha self.regularization_param: float = regularization_param self.num_iterations: int = num_iterations self.theta: np.ndarray = None def feature_scaling( self, x: np.ndarray ) -> tuple[np.ndarray, np.ndarray, np.ndarray]: mean = np.mean(x, axis=0) std = np.std(x, axis=0) # avoid division by zero for constant features (std = 0) std[std == 0] = 1 # set std=1 for constant features to avoid NaN x_scaled = (x - mean) / std return x_scaled, mean, std def fit(self, x: np.ndarray, y: np.ndarray) -> None: x_scaled, mean, std = self.feature_scaling(x) m, n = x_scaled.shape self.theta = np.zeros(n) # initializing weights to zeros for _ in range(self.num_iterations): predictions = x_scaled.dot(self.theta) error = predictions - y # computing gradient with L2 regularization gradient = ( x_scaled.T.dot(error) + self.regularization_param * self.theta ) / m self.theta -= self.alpha * gradient # updating weights def predict(self, x: np.ndarray) -> np.ndarray: x_scaled, _, _ = self.feature_scaling(x) return x_scaled.dot(self.theta) def compute_cost(self, x: np.ndarray, y: np.ndarray) -> float: x_scaled, _, _ = self.feature_scaling(x) m = len(y) predictions = x_scaled.dot(self.theta) cost = ( 1 / (2 * m)) * np.sum((predictions - y) ** 2) + ( self.regularization_param / (2 * m) ) * np.sum(self.theta**2) return cost def mean_absolute_error(self, y_true: np.ndarray, y_pred: np.ndarray) -> float: return np.mean(np.abs(y_true - y_pred)) # Example usage if __name__ == "__main__": data = pd.read_csv("ADRvsRating.csv") x = data[["Rating"]].to_numpy() y = data["ADR"].to_numpy() y = (y - np.mean(y)) / np.std(y) # added bias term to the feature matrix x = np.c_[np.ones(x.shape[0]), x] # initialize and train the ridge regression model model = RidgeRegression(alpha=0.01, regularization_param=0.1, num_iterations=1000) model.fit(x, y) # predictions predictions = model.predict(x) # results print("Optimized Weights:", model.theta) print("Cost:", model.compute_cost(x, y)) print("Mean Absolute Error:", model.mean_absolute_error(y, predictions))