r""" A binary search Tree Example 8 / \ 3 10 / \ \ 1 6 14 / \ / 4 7 13 >>> t = BinarySearchTree().insert(8, 3, 6, 1, 10, 14, 13, 4, 7) >>> print(" ".join(repr(i.value) for i in t.traversal_tree())) 8 3 1 6 4 7 10 14 13 >>> tuple(i.value for i in t.traversal_tree(inorder)) (1, 3, 4, 6, 7, 8, 10, 13, 14) >>> tuple(t) (1, 3, 4, 6, 7, 8, 10, 13, 14) >>> t.find_kth_smallest(3, t.root) 4 >>> tuple(t)[3-1] 4 >>> print(" ".join(repr(i.value) for i in t.traversal_tree(postorder))) 1 4 7 6 3 13 14 10 8 >>> t.remove(20) Traceback (most recent call last): ... ValueError: Value 20 not found >>> BinarySearchTree().search(6) Traceback (most recent call last): ... IndexError: Warning: Tree is empty! please use another. Other example: >>> testlist = (8, 3, 6, 1, 10, 14, 13, 4, 7) >>> t = BinarySearchTree() >>> for i in testlist: ... t.insert(i) # doctest: +ELLIPSIS BinarySearchTree(root=8) BinarySearchTree(root={'8': (3, None)}) BinarySearchTree(root={'8': ({'3': (None, 6)}, None)}) BinarySearchTree(root={'8': ({'3': (1, 6)}, None)}) BinarySearchTree(root={'8': ({'3': (1, 6)}, 10)}) BinarySearchTree(root={'8': ({'3': (1, 6)}, {'10': (None, 14)})}) BinarySearchTree(root={'8': ({'3': (1, 6)}, {'10': (None, {'14': (13, None)})})}) BinarySearchTree(root={'8': ({'3': (1, {'6': (4, None)})}, {'10': (None, {'14': ... BinarySearchTree(root={'8': ({'3': (1, {'6': (4, 7)})}, {'10': (None, {'14': (13, ... Prints all the elements of the list in order traversal >>> print(t) {'8': ({'3': (1, {'6': (4, 7)})}, {'10': (None, {'14': (13, None)})})} Test existence >>> t.search(6) is not None True >>> 6 in t True >>> t.search(-1) is not None False >>> -1 in t False >>> t.search(6).is_right True >>> t.search(1).is_right False >>> t.get_max().value 14 >>> max(t) 14 >>> t.get_min().value 1 >>> min(t) 1 >>> t.empty() False >>> not t False >>> for i in testlist: ... t.remove(i) >>> t.empty() True >>> not t True """ from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass from typing import Any, Self @dataclass class Node: value: int left: Node | None = None right: Node | None = None parent: Node | None = None # Added in order to delete a node easier def __iter__(self) -> Iterator[int]: """ >>> list(Node(0)) [0] >>> list(Node(0, Node(-1), Node(1), None)) [-1, 0, 1] """ yield from self.left or [] yield self.value yield from self.right or [] def __repr__(self) -> str: from pprint import pformat if self.left is None and self.right is None: return str(self.value) return pformat({f"{self.value}": (self.left, self.right)}, indent=1) @property def is_right(self) -> bool: return bool(self.parent and self is self.parent.right) @dataclass class BinarySearchTree: root: Node | None = None def __bool__(self) -> bool: return bool(self.root) def __iter__(self) -> Iterator[int]: yield from self.root or [] def __str__(self) -> str: """ Return a string of all the Nodes using in order traversal """ return str(self.root) def __reassign_nodes(self, node: Node, new_children: Node | None) -> None: if new_children is not None: # reset its kids new_children.parent = node.parent if node.parent is not None: # reset its parent if node.is_right: # If it is the right child node.parent.right = new_children else: node.parent.left = new_children else: self.root = new_children def empty(self) -> bool: """ Returns True if the tree does not have any element(s). False if the tree has element(s). >>> BinarySearchTree().empty() True >>> BinarySearchTree().insert(1).empty() False >>> BinarySearchTree().insert(8, 3, 6, 1, 10, 14, 13, 4, 7).empty() False """ return not self.root def __insert(self, value) -> None: """ Insert a new node in Binary Search Tree with value label """ new_node = Node(value) # create a new Node if self.empty(): # if Tree is empty self.root = new_node # set its root else: # Tree is not empty parent_node = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: parent_node.left = new_node # We insert the new node in a leaf break else: parent_node = parent_node.left elif parent_node.right is None: parent_node.right = new_node break else: parent_node = parent_node.right new_node.parent = parent_node def insert(self, *values) -> Self: for value in values: self.__insert(value) return self def search(self, value) -> Node | None: """ >>> tree = BinarySearchTree().insert(10, 20, 30, 40, 50) >>> tree.search(10) {'10': (None, {'20': (None, {'30': (None, {'40': (None, 50)})})})} >>> tree.search(20) {'20': (None, {'30': (None, {'40': (None, 50)})})} >>> tree.search(30) {'30': (None, {'40': (None, 50)})} >>> tree.search(40) {'40': (None, 50)} >>> tree.search(50) 50 >>> tree.search(5) is None # element not present True >>> tree.search(0) is None # element not present True >>> tree.search(-5) is None # element not present True >>> BinarySearchTree().search(10) Traceback (most recent call last): ... IndexError: Warning: Tree is empty! please use another. """ if self.empty(): raise IndexError("Warning: Tree is empty! please use another.") else: node = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: node = node.left if value < node.value else node.right return node def get_max(self, node: Node | None = None) -> Node | None: """ We go deep on the right branch >>> BinarySearchTree().insert(10, 20, 30, 40, 50).get_max() 50 >>> BinarySearchTree().insert(-5, -1, 0.1, -0.3, -4.5).get_max() {'0.1': (-0.3, None)} >>> BinarySearchTree().insert(1, 78.3, 30, 74.0, 1).get_max() {'78.3': ({'30': (1, 74.0)}, None)} >>> BinarySearchTree().insert(1, 783, 30, 740, 1).get_max() {'783': ({'30': (1, 740)}, None)} """ if node is None: if self.root is None: return None node = self.root if not self.empty(): while node.right is not None: node = node.right return node def get_min(self, node: Node | None = None) -> Node | None: """ We go deep on the left branch >>> BinarySearchTree().insert(10, 20, 30, 40, 50).get_min() {'10': (None, {'20': (None, {'30': (None, {'40': (None, 50)})})})} >>> BinarySearchTree().insert(-5, -1, 0, -0.3, -4.5).get_min() {'-5': (None, {'-1': (-4.5, {'0': (-0.3, None)})})} >>> BinarySearchTree().insert(1, 78.3, 30, 74.0, 1).get_min() {'1': (None, {'78.3': ({'30': (1, 74.0)}, None)})} >>> BinarySearchTree().insert(1, 783, 30, 740, 1).get_min() {'1': (None, {'783': ({'30': (1, 740)}, None)})} """ if node is None: node = self.root if self.root is None: return None if not self.empty(): node = self.root while node.left is not None: node = node.left return node def remove(self, value: int) -> None: # Look for the node with that label node = self.search(value) if node is None: msg = f"Value {value} not found" raise ValueError(msg) if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(node, None) elif node.left is None: # Has only right children self.__reassign_nodes(node, node.right) elif node.right is None: # Has only left children self.__reassign_nodes(node, node.left) else: predecessor = self.get_max( node.left ) # Gets the max value of the left branch self.remove(predecessor.value) # type: ignore[union-attr] node.value = ( predecessor.value # type: ignore[union-attr] ) # Assigns the value to the node to delete and keep tree structure def preorder_traverse(self, node: Node | None) -> Iterable: if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left) yield from self.preorder_traverse(node.right) def traversal_tree(self, traversal_function=None) -> Any: """ This function traversal the tree. You can pass a function to traversal the tree as needed by client code """ if traversal_function is None: return self.preorder_traverse(self.root) else: return traversal_function(self.root) def inorder(self, arr: list, node: Node | None) -> None: """Perform an inorder traversal and append values of the nodes to a list named arr""" if node: self.inorder(arr, node.left) arr.append(node.value) self.inorder(arr, node.right) def find_kth_smallest(self, k: int, node: Node) -> int: """Return the kth smallest element in a binary search tree""" arr: list[int] = [] self.inorder(arr, node) # append all values to list using inorder traversal return arr[k - 1] def inorder(curr_node: Node | None) -> list[Node]: """ inorder (left, self, right) """ node_list = [] if curr_node is not None: node_list = [*inorder(curr_node.left), curr_node, *inorder(curr_node.right)] return node_list def postorder(curr_node: Node | None) -> list[Node]: """ postOrder (left, right, self) """ node_list = [] if curr_node is not None: node_list = postorder(curr_node.left) + postorder(curr_node.right) + [curr_node] return node_list if __name__ == "__main__": import doctest doctest.testmod(verbose=True)