""" Wavelet tree is a data-structure designed to efficiently answer various range queries for arrays. Wavelets trees are different from other binary trees in the sense that the nodes are split based on the actual values of the elements and not on indices, such as the with segment trees or fenwick trees. You can read more about them here: 1. https://users.dcc.uchile.cl/~jperez/papers/ioiconf16.pdf 2. https://www.youtube.com/watch?v=4aSv9PcecDw&t=811s 3. https://www.youtube.com/watch?v=CybAgVF-MMc&t=1178s """ from typing import Optional test_array = [2, 1, 4, 5, 6, 0, 8, 9, 1, 2, 0, 6, 4, 2, 0, 6, 5, 3, 2, 7] class Node: def __init__(self, length: int) -> None: self.minn: int = -1 self.maxx: int = -1 self.map_left: list[int] = [-1] * length self.left: Optional[Node] = None self.right: Optional[Node] = None def __repr__(self) -> str: """ >>> node = Node(length=27) >>> repr(node) 'min_value: -1, max_value: -1' >>> repr(node) == str(node) True """ return f"min_value: {self.minn}, max_value: {self.maxx}" def build_tree(arr: list[int]) -> Node: """ Builds the tree for arr and returns the root of the constructed tree >>> build_tree(test_array) min_value: 0, max_value: 9 """ root = Node(len(arr)) root.minn, root.maxx = min(arr), max(arr) # Leaf node case where the node contains only one unique value if root.minn == root.maxx: return root """ Take the mean of min and max element of arr as the pivot and partition arr into left_arr and right_arr with all elements <= pivot in the left_arr and the rest in right_arr, maintaining the order of the elements, then recursively build trees for left_arr and right_arr """ pivot = (root.minn + root.maxx) // 2 left_arr, right_arr = [], [] for index, num in enumerate(arr): if num <= pivot: left_arr.append(num) else: right_arr.append(num) root.map_left[index] = len(left_arr) root.left = build_tree(left_arr) root.right = build_tree(right_arr) return root def rank_till_index(node: Node, num: int, index: int) -> int: """ Returns the number of occurrences of num in interval [0, index] in the list >>> root = build_tree(test_array) >>> rank_till_index(root, 6, 6) 1 >>> rank_till_index(root, 2, 0) 1 >>> rank_till_index(root, 1, 10) 2 >>> rank_till_index(root, 17, 7) 0 >>> rank_till_index(root, 0, 9) 1 """ if index < 0: return 0 # Leaf node cases if node.minn == node.maxx: return index + 1 if node.minn == num else 0 pivot = (node.minn + node.maxx) // 2 if num <= pivot: # go the left subtree and map index to the left subtree return rank_till_index(node.left, num, node.map_left[index] - 1) else: # go to the right subtree and map index to the right subtree return rank_till_index(node.right, num, index - node.map_left[index]) def rank(node: Node, num: int, start: int, end: int) -> int: """ Returns the number of occurrences of num in interval [start, end] in the list >>> root = build_tree(test_array) >>> rank(root, 6, 3, 13) 2 >>> rank(root, 2, 0, 19) 4 >>> rank(root, 9, 2 ,2) 0 >>> rank(root, 0, 5, 10) 2 """ if start > end: return 0 rank_till_end = rank_till_index(node, num, end) rank_before_start = rank_till_index(node, num, start - 1) return rank_till_end - rank_before_start def quantile(node: Node, index: int, start: int, end: int) -> int: """ Returns the index'th smallest element in interval [start, end] in the list index is 0-indexed >>> root = build_tree(test_array) >>> quantile(root, 2, 2, 5) 5 >>> quantile(root, 5, 2, 13) 4 >>> quantile(root, 0, 6, 6) 8 >>> quantile(root, 4, 2, 5) -1 """ if index > (end - start) or start > end: return -1 # Leaf node case if node.minn == node.maxx: return node.minn # Number of elements in the left subtree in interval [start, end] num_elements_in_left_tree = node.map_left[end] - ( node.map_left[start - 1] if start else 0 ) if num_elements_in_left_tree > index: return quantile( node.left, index, (node.map_left[start - 1] if start else 0), node.map_left[end] - 1, ) else: return quantile( node.right, index - num_elements_in_left_tree, start - (node.map_left[start - 1] if start else 0), end - node.map_left[end], ) def range_counting( node: Node, start: int, end: int, start_num: int, end_num: int ) -> int: """ Returns the number of elememts in range [start_num, end_num] in interval [start, end] in the list >>> root = build_tree(test_array) >>> range_counting(root, 1, 10, 3, 7) 3 >>> range_counting(root, 2, 2, 1, 4) 1 >>> range_counting(root, 0, 19, 0, 100) 20 >>> range_counting(root, 1, 0, 1, 100) 0 >>> range_counting(root, 0, 17, 100, 1) 0 """ if ( start > end or start_num > end_num or node.minn > end_num or node.maxx < start_num ): return 0 if start_num <= node.minn and node.maxx <= end_num: return end - start + 1 left = range_counting( node.left, (node.map_left[start - 1] if start else 0), node.map_left[end] - 1, start_num, end_num, ) right = range_counting( node.right, start - (node.map_left[start - 1] if start else 0), end - node.map_left[end], start_num, end_num, ) return left + right if __name__ == "__main__": import doctest doctest.testmod()