""" In physics and astronomy, a gravitational N-body simulation is a simulation of a dynamical system of particles under the influence of gravity. The system consists of a number of bodies, each of which exerts a gravitational force on all other bodies. These forces are calculated using Newton's law of universal gravitation. The Euler method is used at each time-step to calculate the change in velocity and position brought about by these forces. Softening is used to prevent numerical divergences when a particle comes too close to another (and the force goes to infinity). (Description adapted from https://en.wikipedia.org/wiki/N-body_simulation ) (See also http://www.shodor.org/refdesk/Resources/Algorithms/EulersMethod/ ) """ from __future__ import annotations import random from matplotlib import animation from matplotlib import pyplot as plt # Frame rate of the animation INTERVAL = 20 # Time between time steps in seconds DELTA_TIME = INTERVAL / 1000 class Body: def __init__( self, position_x: float, position_y: float, velocity_x: float, velocity_y: float, mass: float = 1.0, size: float = 1.0, color: str = "blue", ) -> None: """ The parameters "size" & "color" are not relevant for the simulation itself, they are only used for plotting. """ self.position_x = position_x self.position_y = position_y self.velocity_x = velocity_x self.velocity_y = velocity_y self.mass = mass self.size = size self.color = color @property def position(self) -> tuple[float, float]: return self.position_x, self.position_y @property def velocity(self) -> tuple[float, float]: return self.velocity_x, self.velocity_y def update_velocity( self, force_x: float, force_y: float, delta_time: float ) -> None: """ Euler algorithm for velocity >>> body_1 = Body(0.,0.,0.,0.) >>> body_1.update_velocity(1.,0.,1.) >>> body_1.velocity (1.0, 0.0) >>> body_1.update_velocity(1.,0.,1.) >>> body_1.velocity (2.0, 0.0) >>> body_2 = Body(0.,0.,5.,0.) >>> body_2.update_velocity(0.,-10.,10.) >>> body_2.velocity (5.0, -100.0) >>> body_2.update_velocity(0.,-10.,10.) >>> body_2.velocity (5.0, -200.0) """ self.velocity_x += force_x * delta_time self.velocity_y += force_y * delta_time def update_position(self, delta_time: float) -> None: """ Euler algorithm for position >>> body_1 = Body(0.,0.,1.,0.) >>> body_1.update_position(1.) >>> body_1.position (1.0, 0.0) >>> body_1.update_position(1.) >>> body_1.position (2.0, 0.0) >>> body_2 = Body(10.,10.,0.,-2.) >>> body_2.update_position(1.) >>> body_2.position (10.0, 8.0) >>> body_2.update_position(1.) >>> body_2.position (10.0, 6.0) """ self.position_x += self.velocity_x * delta_time self.position_y += self.velocity_y * delta_time class BodySystem: """ This class is used to hold the bodies, the gravitation constant, the time factor and the softening factor. The time factor is used to control the speed of the simulation. The softening factor is used for softening, a numerical trick for N-body simulations to prevent numerical divergences when two bodies get too close to each other. """ def __init__( self, bodies: list[Body], gravitation_constant: float = 1.0, time_factor: float = 1.0, softening_factor: float = 0.0, ) -> None: self.bodies = bodies self.gravitation_constant = gravitation_constant self.time_factor = time_factor self.softening_factor = softening_factor def __len__(self) -> int: return len(self.bodies) def update_system(self, delta_time: float) -> None: """ For each body, loop through all other bodies to calculate the total force they exert on it. Use that force to update the body's velocity. >>> body_system_1 = BodySystem([Body(0,0,0,0), Body(10,0,0,0)]) >>> len(body_system_1) 2 >>> body_system_1.update_system(1) >>> body_system_1.bodies[0].position (0.01, 0.0) >>> body_system_1.bodies[0].velocity (0.01, 0.0) >>> body_system_2 = BodySystem([Body(-10,0,0,0), Body(10,0,0,0, mass=4)], 1, 10) >>> body_system_2.update_system(1) >>> body_system_2.bodies[0].position (-9.0, 0.0) >>> body_system_2.bodies[0].velocity (0.1, 0.0) """ for body1 in self.bodies: force_x = 0.0 force_y = 0.0 for body2 in self.bodies: if body1 != body2: dif_x = body2.position_x - body1.position_x dif_y = body2.position_y - body1.position_y # Calculation of the distance using Pythagoras's theorem # Extra factor due to the softening technique distance = (dif_x**2 + dif_y**2 + self.softening_factor) ** (1 / 2) # Newton's law of universal gravitation. force_x += ( self.gravitation_constant * body2.mass * dif_x / distance**3 ) force_y += ( self.gravitation_constant * body2.mass * dif_y / distance**3 ) # Update the body's velocity once all the force components have been added body1.update_velocity(force_x, force_y, delta_time * self.time_factor) # Update the positions only after all the velocities have been updated for body in self.bodies: body.update_position(delta_time * self.time_factor) def update_step( body_system: BodySystem, delta_time: float, patches: list[plt.Circle] ) -> None: """ Updates the body-system and applies the change to the patch-list used for plotting >>> body_system_1 = BodySystem([Body(0,0,0,0), Body(10,0,0,0)]) >>> patches_1 = [plt.Circle((body.position_x, body.position_y), body.size, ... fc=body.color)for body in body_system_1.bodies] #doctest: +ELLIPSIS >>> update_step(body_system_1, 1, patches_1) >>> patches_1[0].center (0.01, 0.0) >>> body_system_2 = BodySystem([Body(-10,0,0,0), Body(10,0,0,0, mass=4)], 1, 10) >>> patches_2 = [plt.Circle((body.position_x, body.position_y), body.size, ... fc=body.color)for body in body_system_2.bodies] #doctest: +ELLIPSIS >>> update_step(body_system_2, 1, patches_2) >>> patches_2[0].center (-9.0, 0.0) """ # Update the positions of the bodies body_system.update_system(delta_time) # Update the positions of the patches for patch, body in zip(patches, body_system.bodies): patch.center = (body.position_x, body.position_y) def plot( title: str, body_system: BodySystem, x_start: float = -1, x_end: float = 1, y_start: float = -1, y_end: float = 1, ) -> None: """ Utility function to plot how the given body-system evolves over time. No doctest provided since this function does not have a return value. """ fig = plt.figure() fig.canvas.manager.set_window_title(title) ax = plt.axes( xlim=(x_start, x_end), ylim=(y_start, y_end) ) # Set section to be plotted plt.gca().set_aspect("equal") # Fix aspect ratio # Each body is drawn as a patch by the plt-function patches = [ plt.Circle((body.position_x, body.position_y), body.size, fc=body.color) for body in body_system.bodies ] for patch in patches: ax.add_patch(patch) # Function called at each step of the animation def update(frame: int) -> list[plt.Circle]: update_step(body_system, DELTA_TIME, patches) return patches anim = animation.FuncAnimation( # noqa: F841 fig, update, interval=INTERVAL, blit=True ) plt.show() def example_1() -> BodySystem: """ Example 1: figure-8 solution to the 3-body-problem This example can be seen as a test of the implementation: given the right initial conditions, the bodies should move in a figure-8. (initial conditions taken from http://www.artcompsci.org/vol_1/v1_web/node56.html) >>> body_system = example_1() >>> len(body_system) 3 """ position_x = 0.9700436 position_y = -0.24308753 velocity_x = 0.466203685 velocity_y = 0.43236573 bodies1 = [ Body(position_x, position_y, velocity_x, velocity_y, size=0.2, color="red"), Body(-position_x, -position_y, velocity_x, velocity_y, size=0.2, color="green"), Body(0, 0, -2 * velocity_x, -2 * velocity_y, size=0.2, color="blue"), ] return BodySystem(bodies1, time_factor=3) def example_2() -> BodySystem: """ Example 2: Moon's orbit around the earth This example can be seen as a test of the implementation: given the right initial conditions, the moon should orbit around the earth as it actually does. (mass, velocity and distance taken from https://en.wikipedia.org/wiki/Earth and https://en.wikipedia.org/wiki/Moon) No doctest provided since this function does not have a return value. """ moon_mass = 7.3476e22 earth_mass = 5.972e24 velocity_dif = 1022 earth_moon_distance = 384399000 gravitation_constant = 6.674e-11 # Calculation of the respective velocities so that total impulse is zero, # i.e. the two bodies together don't move moon_velocity = earth_mass * velocity_dif / (earth_mass + moon_mass) earth_velocity = moon_velocity - velocity_dif moon = Body(-earth_moon_distance, 0, 0, moon_velocity, moon_mass, 10000000, "grey") earth = Body(0, 0, 0, earth_velocity, earth_mass, 50000000, "blue") return BodySystem([earth, moon], gravitation_constant, time_factor=1000000) def example_3() -> BodySystem: """ Example 3: Random system with many bodies. No doctest provided since this function does not have a return value. """ bodies = [] for _ in range(10): velocity_x = random.uniform(-0.5, 0.5) velocity_y = random.uniform(-0.5, 0.5) # Bodies are created pairwise with opposite velocities so that the # total impulse remains zero bodies.append( Body( random.uniform(-0.5, 0.5), random.uniform(-0.5, 0.5), velocity_x, velocity_y, size=0.05, ) ) bodies.append( Body( random.uniform(-0.5, 0.5), random.uniform(-0.5, 0.5), -velocity_x, -velocity_y, size=0.05, ) ) return BodySystem(bodies, 0.01, 10, 0.1) if __name__ == "__main__": plot("Figure-8 solution to the 3-body-problem", example_1(), -2, 2, -2, 2) plot( "Moon's orbit around the earth", example_2(), -430000000, 430000000, -430000000, 430000000, ) plot("Random system with many bodies", example_3(), -1.5, 1.5, -1.5, 1.5)