import matplotlib.pyplot as plt import pandas as pd # Importing the dataset dataset = pd.read_csv('https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/position_salaries.csv') X = dataset.iloc[:, 1:2].values y = dataset.iloc[:, 2].values # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures from sklearn.linear_model import LinearRegression poly_reg = PolynomialFeatures(degree=4) X_poly = poly_reg.fit_transform(X) pol_reg = LinearRegression() pol_reg.fit(X_poly, y) # Visualizing the Polymonial Regression results def viz_polymonial(): plt.scatter(X, y, color='red') plt.plot(X, pol_reg.predict(poly_reg.fit_transform(X)), color='blue') plt.title('Truth or Bluff (Linear Regression)') plt.xlabel('Position level') plt.ylabel('Salary') plt.show() return viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) #output should be 132148.43750003