# XGBoost Regressor Example import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def data_handling(data: dict) -> tuple: # Split dataset into features and target. Data is features. """ >>> data_handling(( ... {'data':'[ 8.3252 41. 6.9841269 1.02380952 322. 2.55555556 37.88 -122.23 ]' ... ,'target':([4.526])})) ('[ 8.3252 41. 6.9841269 1.02380952 322. 2.55555556 37.88 -122.23 ]', [4.526]) """ return (data["data"], data["target"]) def xgboost( features: np.ndarray, target: np.ndarray, test_features: np.ndarray ) -> np.ndarray: """ >>> xgboost(np.array([[ 2.3571 , 52. , 6.00813008, 1.06775068, ... 907. , 2.45799458, 40.58 , -124.26]]),np.array([1.114]), ... np.array([[1.97840000e+00, 3.70000000e+01, 4.98858447e+00, 1.03881279e+00, ... 1.14300000e+03, 2.60958904e+00, 3.67800000e+01, -1.19780000e+02]])) array([[1.1139996]], dtype=float32) """ xgb = XGBRegressor( verbosity=0, random_state=42, tree_method="exact", base_score=0.5 ) xgb.fit(features, target) # Predict target for test data predictions = xgb.predict(test_features) predictions = predictions.reshape(len(predictions), 1) return predictions def main() -> None: """ >>> main() Mean Absolute Error : 0.30957163379906033 Mean Square Error : 0.22611560196662744 The URL for this algorithm https://xgboost.readthedocs.io/en/stable/ California house price dataset is used to demonstrate the algorithm. """ # Load California house price dataset california = fetch_california_housing() data, target = data_handling(california) x_train, x_test, y_train, y_test = train_test_split( data, target, test_size=0.25, random_state=1 ) predictions = xgboost(x_train, y_train, x_test) # Error printing print(f"Mean Absolute Error : {mean_absolute_error(y_test, predictions)}") print(f"Mean Square Error : {mean_squared_error(y_test, predictions)}") if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()