""" This is pure python implementation of Tabu search algorithm for a Travelling Salesman Problem, that the distances between the cities are symmetric (the distance between city 'a' and city 'b' is the same between city 'b' and city 'a'). The TSP can be represented into a graph. The cities are represented by nodes and the distance between them is represented by the weight of the ark between the nodes. The .txt file with the graph has the form: node1 node2 distance_between_node1_and_node2 node1 node3 distance_between_node1_and_node3 ... Be careful node1, node2 and the distance between them, must exist only once. This means in the .txt file should not exist: node1 node2 distance_between_node1_and_node2 node2 node1 distance_between_node2_and_node1 For pytests run following command: pytest For manual testing run: python tabu_search.py -f your_file_name.txt -number_of_iterations_of_tabu_search -s size_of_tabu_search e.g. python tabu_search.py -f tabudata2.txt -i 4 -s 3 """ import copy import argparse import sys def generate_neighbours(path): """ Pure implementation of generating a dictionary of neighbors and the cost with each neighbor, given a path file that includes a graph. :param path: The path to the .txt file that includes the graph (e.g.tabudata2.txt) :return dict_of_neighbours: Dictionary with key each node and value a list of lists with the neighbors of the node and the cost (distance) for each neighbor. Example of dict_of_neighbours: >>) dict_of_neighbours[a] [[b,20],[c,18],[d,22],[e,26]] This indicates the neighbors of node (city) 'a', which has neighbor the node 'b' with distance 20, the node 'c' with distance 18, the node 'd' with distance 22 and the node 'e' with distance 26. """ dict_of_neighbours = {} with open(path) as f: for line in f: if line.split()[0] not in dict_of_neighbours: _list = list() _list.append([line.split()[1], line.split()[2]]) dict_of_neighbours[line.split()[0]] = _list else: dict_of_neighbours[line.split()[0]].append([line.split()[1], line.split()[2]]) if line.split()[1] not in dict_of_neighbours: _list = list() _list.append([line.split()[0], line.split()[2]]) dict_of_neighbours[line.split()[1]] = _list else: dict_of_neighbours[line.split()[1]].append([line.split()[0], line.split()[2]]) return dict_of_neighbours def generate_first_solution(path, dict_of_neighbours): """ Pure implementation of generating the first solution for the Tabu search to start, with the redundant resolution strategy. That means that we start from the starting node (e.g. node 'a'), then we go to the city nearest (lowest distance) to this node (let's assume is node 'c'), then we go to the nearest city of the node 'c', etc till we have visited all cities and return to the starting node. :param path: The path to the .txt file that includes the graph (e.g.tabudata2.txt) :param dict_of_neighbours: Dictionary with key each node and value a list of lists with the neighbors of the node and the cost (distance) for each neighbor. :return first_solution: The solution for the first iteration of Tabu search using the redundant resolution strategy in a list. :return distance_of_first_solution: The total distance that Travelling Salesman will travel, if he follows the path in first_solution. """ with open(path) as f: start_node = f.read(1) end_node = start_node first_solution = [] visiting = start_node distance_of_first_solution = 0 while visiting not in first_solution: minim = 10000 for k in dict_of_neighbours[visiting]: if int(k[1]) < int(minim) and k[0] not in first_solution: minim = k[1] best_node = k[0] first_solution.append(visiting) distance_of_first_solution = distance_of_first_solution + int(minim) visiting = best_node first_solution.append(end_node) position = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 distance_of_first_solution = distance_of_first_solution + int( dict_of_neighbours[first_solution[-2]][position][1]) - 10000 return first_solution, distance_of_first_solution def find_neighborhood(solution, dict_of_neighbours): """ Pure implementation of generating the neighborhood (sorted by total distance of each solution from lowest to highest) of a solution with 1-1 exchange method, that means we exchange each node in a solution with each other node and generating a number of solution named neighborhood. :param solution: The solution in which we want to find the neighborhood. :param dict_of_neighbours: Dictionary with key each node and value a list of lists with the neighbors of the node and the cost (distance) for each neighbor. :return neighborhood_of_solution: A list that includes the solutions and the total distance of each solution (in form of list) that are produced with 1-1 exchange from the solution that the method took as an input Example: >>) find_neighborhood(['a','c','b','d','e','a']) [['a','e','b','d','c','a',90], [['a','c','d','b','e','a',90],['a','d','b','c','e','a',93], ['a','c','b','e','d','a',102], ['a','c','e','d','b','a',113], ['a','b','c','d','e','a',93]] """ neighborhood_of_solution = [] for n in solution[1:-1]: idx1 = solution.index(n) for kn in solution[1:-1]: idx2 = solution.index(kn) if n == kn: continue _tmp = copy.deepcopy(solution) _tmp[idx1] = kn _tmp[idx2] = n distance = 0 for k in _tmp[:-1]: next_node = _tmp[_tmp.index(k) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: distance = distance + int(i[1]) _tmp.append(distance) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp) indexOfLastItemInTheList = len(neighborhood_of_solution[0]) - 1 neighborhood_of_solution.sort(key=lambda x: x[indexOfLastItemInTheList]) return neighborhood_of_solution def tabu_search(first_solution, distance_of_first_solution, dict_of_neighbours, iters, size): """ Pure implementation of Tabu search algorithm for a Travelling Salesman Problem in Python. :param first_solution: The solution for the first iteration of Tabu search using the redundant resolution strategy in a list. :param distance_of_first_solution: The total distance that Travelling Salesman will travel, if he follows the path in first_solution. :param dict_of_neighbours: Dictionary with key each node and value a list of lists with the neighbors of the node and the cost (distance) for each neighbor. :param iters: The number of iterations that Tabu search will execute. :param size: The size of Tabu List. :return best_solution_ever: The solution with the lowest distance that occured during the execution of Tabu search. :return best_cost: The total distance that Travelling Salesman will travel, if he follows the path in best_solution ever. """ count = 1 solution = first_solution tabu_list = list() best_cost = distance_of_first_solution best_solution_ever = solution while count <= iters: neighborhood = find_neighborhood(solution, dict_of_neighbours) index_of_best_solution = 0 best_solution = neighborhood[index_of_best_solution] best_cost_index = len(best_solution) - 1 found = False while found is False: i = 0 while i < len(best_solution): if best_solution[i] != solution[i]: first_exchange_node = best_solution[i] second_exchange_node = solution[i] break i = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [second_exchange_node, first_exchange_node] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node]) found = True solution = best_solution[:-1] cost = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: best_cost = cost best_solution_ever = solution else: index_of_best_solution = index_of_best_solution + 1 best_solution = neighborhood[index_of_best_solution] if len(tabu_list) >= size: tabu_list.pop(0) count = count + 1 return best_solution_ever, best_cost def main(args=None): dict_of_neighbours = generate_neighbours(args.File) first_solution, distance_of_first_solution = generate_first_solution(args.File, dict_of_neighbours) best_sol, best_cost = tabu_search(first_solution, distance_of_first_solution, dict_of_neighbours, args.Iterations, args.Size) print("Best solution: {0}, with total distance: {1}.".format(best_sol, best_cost)) if __name__ == "__main__": parser = argparse.ArgumentParser(description="Tabu Search") parser.add_argument( "-f", "--File", type=str, help="Path to the file containing the data", required=True) parser.add_argument( "-i", "--Iterations", type=int, help="How many iterations the algorithm should perform", required=True) parser.add_argument( "-s", "--Size", type=int, help="Size of the tabu list", required=True) # Pass the arguments to main method sys.exit(main(parser.parse_args()))