class Matrix: """ Matrix structure. """ def __init__(self, row: int, column: int, default_value: float = 0): """ Initialize matrix with given size and default value. Example: >>> a = Matrix(2, 3, 1) >>> a Matrix consist of 2 rows and 3 columns [1, 1, 1] [1, 1, 1] """ self.row, self.column = row, column self.array = [[default_value for c in range(column)] for r in range(row)] def __str__(self): """ Return string representation of this matrix. """ # Prefix s = "Matrix consist of %d rows and %d columns\n" % (self.row, self.column) # Make string identifier max_element_length = 0 for row_vector in self.array: for obj in row_vector: max_element_length = max(max_element_length, len(str(obj))) string_format_identifier = "%%%ds" % (max_element_length,) # Make string and return def single_line(row_vector): nonlocal string_format_identifier line = "[" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector) line += "]" return line s += "\n".join(single_line(row_vector) for row_vector in self.array) return s def __repr__(self): return str(self) def validateIndices(self, loc: tuple): """ Check if given indices are valid to pick element from matrix. Example: >>> a = Matrix(2, 6, 0) >>> a.validateIndices((2, 7)) False >>> a.validateIndices((0, 0)) True """ if not(isinstance(loc, (list, tuple)) and len(loc) == 2): return False elif not(0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__(self, loc: tuple): """ Return array[row][column] where loc = (row, column). Example: >>> a = Matrix(3, 2, 7) >>> a[1, 0] 7 """ assert self.validateIndices(loc) return self.array[loc[0]][loc[1]] def __setitem__(self, loc: tuple, value: float): """ Set array[row][column] = value where loc = (row, column). Example: >>> a = Matrix(2, 3, 1) >>> a[1, 2] = 51 >>> a Matrix consist of 2 rows and 3 columns [ 1, 1, 1] [ 1, 1, 51] """ assert self.validateIndices(loc) self.array[loc[0]][loc[1]] = value def __add__(self, another): """ Return self + another. Example: >>> a = Matrix(2, 1, -4) >>> b = Matrix(2, 1, 3) >>> a+b Matrix consist of 2 rows and 1 columns [-1] [-1] """ # Validation assert isinstance(another, Matrix) assert self.row == another.row and self.column == another.column # Add result = Matrix(self.row, self.column) for r in range(self.row): for c in range(self.column): result[r,c] = self[r,c] + another[r,c] return result def __neg__(self): """ Return -self. Example: >>> a = Matrix(2, 2, 3) >>> a[0, 1] = a[1, 0] = -2 >>> -a Matrix consist of 2 rows and 2 columns [-3, 2] [ 2, -3] """ result = Matrix(self.row, self.column) for r in range(self.row): for c in range(self.column): result[r,c] = -self[r,c] return result def __sub__(self, another): return self + (-another) def __mul__(self, another): """ Return self * another. Example: >>> a = Matrix(2, 3, 1) >>> a[0,2] = a[1,2] = 3 >>> a * -2 Matrix consist of 2 rows and 3 columns [-2, -2, -6] [-2, -2, -6] """ if isinstance(another, (int, float)): # Scalar multiplication result = Matrix(self.row, self.column) for r in range(self.row): for c in range(self.column): result[r,c] = self[r,c] * another return result elif isinstance(another, Matrix): # Matrix multiplication assert(self.column == another.row) result = Matrix(self.row, another.column) for r in range(self.row): for c in range(another.column): for i in range(self.column): result[r,c] += self[r,i] * another[i,c] return result else: raise TypeError("Unsupported type given for another (%s)" % (type(another),)) def transpose(self): """ Return self^T. Example: >>> a = Matrix(2, 3) >>> for r in range(2): ... for c in range(3): ... a[r,c] = r*c ... >>> a.transpose() Matrix consist of 3 rows and 2 columns [0, 0] [0, 1] [0, 2] """ result = Matrix(self.column, self.row) for r in range(self.row): for c in range(self.column): result[c,r] = self[r,c] return result def ShermanMorrison(self, u, v): """ Apply Sherman-Morrison formula in O(n^2). To learn this formula, please look this: https://en.wikipedia.org/wiki/Sherman%E2%80%93Morrison_formula This method returns (A + uv^T)^(-1) where A^(-1) is self. Returns None if it's impossible to calculate. Warning: This method doesn't check if self is invertible. Make sure self is invertible before execute this method. Example: >>> ainv = Matrix(3, 3, 0) >>> for i in range(3): ainv[i,i] = 1 ... >>> u = Matrix(3, 1, 0) >>> u[0,0], u[1,0], u[2,0] = 1, 2, -3 >>> v = Matrix(3, 1, 0) >>> v[0,0], v[1,0], v[2,0] = 4, -2, 5 >>> ainv.ShermanMorrison(u, v) Matrix consist of 3 rows and 3 columns [ 1.2857142857142856, -0.14285714285714285, 0.3571428571428571] [ 0.5714285714285714, 0.7142857142857143, 0.7142857142857142] [ -0.8571428571428571, 0.42857142857142855, -0.0714285714285714] """ # Size validation assert isinstance(u, Matrix) and isinstance(v, Matrix) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate vT = v.transpose() numerator_factor = (vT * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (vT * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def test1(): # a^(-1) ainv = Matrix(3, 3, 0) for i in range(3): ainv[i,i] = 1 print("a^(-1) is %s" % (ainv,)) # u, v u = Matrix(3, 1, 0) u[0,0], u[1,0], u[2,0] = 1, 2, -3 v = Matrix(3, 1, 0) v[0,0], v[1,0], v[2,0] = 4, -2, 5 print("u is %s" % (u,)) print("v is %s" % (v,)) print("uv^T is %s" % (u * v.transpose())) # Sherman Morrison print("(a + uv^T)^(-1) is %s" % (ainv.ShermanMorrison(u, v),)) def test2(): import doctest doctest.testmod() test2()