def add(matrix_a, matrix_b): rows = len(matrix_a) columns = len(matrix_a[0]) matrix_c = [] for i in range(rows): list_1 = [] for j in range(columns): val = matrix_a[i][j] + matrix_b[i][j] list_1.append(val) matrix_c.append(list_1) return matrix_c def scalarMultiply(matrix , n): return [[x * n for x in row] for row in matrix] def multiply(matrix_a, matrix_b): matrix_c = [] n = len(matrix_a) for i in range(n): list_1 = [] for j in range(n): val = 0 for k in range(n): val = val + matrix_a[i][k] * matrix_b[k][j] list_1.append(val) matrix_c.append(list_1) return matrix_c def identity(n): return [[int(row == column) for column in range(n)] for row in range(n)] def transpose(matrix): return map(list , zip(*matrix)) def minor(matrix, row, column): minor = matrix[:row] + matrix[row + 1:] minor = [row[:column] + row[column + 1:] for row in minor] return minor def determinant(matrix): if len(matrix) == 1: return matrix[0][0] res = 0 for x in range(len(matrix)): res += matrix[0][x] * determinant(minor(matrix , 0 , x)) * (-1) ** x return res def inverse(matrix): det = determinant(matrix) if det == 0: return None matrixMinor = [[] for _ in range(len(matrix))] for i in range(len(matrix)): for j in range(len(matrix)): matrixMinor[i].append(determinant(minor(matrix , i , j))) cofactors = [[x * (-1) ** (row + col) for col, x in enumerate(matrixMinor[row])] for row in range(len(matrix))] adjugate = transpose(cofactors) return scalarMultiply(adjugate , 1/det) def main(): matrix_a = [[12, 10], [3, 9]] matrix_b = [[3, 4], [7, 4]] matrix_c = [[11, 12, 13, 14], [21, 22, 23, 24], [31, 32, 33, 34], [41, 42, 43, 44]] matrix_d = [[3, 0, 2], [2, 0, -2], [0, 1, 1]] print(add(matrix_a, matrix_b)) print(multiply(matrix_a, matrix_b)) print(identity(5)) print(minor(matrix_c , 1 , 2)) print(determinant(matrix_b)) print(inverse(matrix_d)) if __name__ == '__main__': main()