""" Project Euler Problem 174: https://projecteuler.net/problem=174 We shall define a square lamina to be a square outline with a square "hole" so that the shape possesses vertical and horizontal symmetry. Given eight tiles it is possible to form a lamina in only one way: 3x3 square with a 1x1 hole in the middle. However, using thirty-two tiles it is possible to form two distinct laminae. If t represents the number of tiles used, we shall say that t = 8 is type L(1) and t = 32 is type L(2). Let N(n) be the number of t ≤ 1000000 such that t is type L(n); for example, N(15) = 832. What is sum N(n) for 1 ≤ n ≤ 10? """ from collections import defaultdict from math import ceil, sqrt def solution(t_limit: int = 1000000, n_limit: int = 10) -> int: """ Return the sum of N(n) for 1 <= n <= n_limit. >>> solution(1000,5) 222 >>> solution(1000,10) 249 >>> solution(10000,10) 2383 """ count: defaultdict = defaultdict(int) for outer_width in range(3, (t_limit // 4) + 2): if outer_width * outer_width > t_limit: hole_width_lower_bound = max( ceil(sqrt(outer_width * outer_width - t_limit)), 1 ) else: hole_width_lower_bound = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(hole_width_lower_bound, outer_width - 1, 2): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= n_limit) if __name__ == "__main__": print(f"{solution() = }")