import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset dataset = pd.read_csv( "https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/" "position_salaries.csv" ) X = dataset.iloc[:, 1:2].values y = dataset.iloc[:, 2].values X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) poly_reg = PolynomialFeatures(degree=4) X_poly = poly_reg.fit_transform(X) pol_reg = LinearRegression() pol_reg.fit(X_poly, y) # Visualizing the Polymonial Regression results def viz_polymonial(): plt.scatter(X, y, color="red") plt.plot(X, pol_reg.predict(poly_reg.fit_transform(X)), color="blue") plt.title("Truth or Bluff (Linear Regression)") plt.xlabel("Position level") plt.ylabel("Salary") plt.show() return if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003